精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A﹣2﹣4),O00),B20)三点.

1)求抛物线y=ax2+bx+c的解析式;

2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.

【答案】解:(1)把A﹣2﹣4),O00),B20)三点的坐标代入y=ax2+bx+c中,得

,解这个方程组,得

抛物线的解析式为y=﹣x2+x

2)由y=﹣x2+x=﹣x﹣12+,可得

抛物线的对称轴为x=1,并且对称轴垂直平分线段OB

∴OM=BM∴OM+AM=BM+AM

连接AB交直线x=1M点,则此时OM+AM最小。

过点AAN⊥x轴于点N

Rt△ABN中,

因此OM+AM最小值为

【解析】

二次函数综合题,曲线上点的坐标与方程的关系,解方程组,二次函数的性质,线段中垂线的性质,三角形三边关系,勾股定理。

2)根据OB点的坐标发现:抛物线上,OB两点正好关于抛物线的对称轴对称,那么只需连接AB,直线AB和抛物线对称轴的交点即为符合要求的M点,而AM+OM的最小值正好是AB的长。

x=1上其它任一点M′,根据三角形两边之和大于第三边的性质,总有:

O M′+A M′=" B" M′+A M′AB=OM+AM

OM+AM为最小值。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,大楼(可以看作不透明的长方体)的四周都是空旷的水平地面.地面上有甲、乙两人,他们现在分别位于点和点处,均在的中垂线上,且到大楼的距离分别为米和米,又已知米,米,由于大楼遮挡着,所以乙不能看到甲.若乙沿着大楼的外面地带行走,直到看到甲(甲保持不动),则他行走的最短距离长为________米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB⊙O的直径,点C⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DCAB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.

(1)求证:AC平分∠DAB;

(2)求证:△PCF是等腰三角形;

(3)AF=6,EF=2,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】凤城商场经销一种高档水果,售价为每千克50

1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;

2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=﹣x2+mx+nx轴于点A﹣20)和点B,交y轴于点C02).

1)求抛物线的函数表达式;

2)若点M在抛物线上,且SAOM=2SBOC,求点M的坐标;

3)如图2,设点N是线段AC上的一动点,作DNx轴,交抛物线于点D,求线段DN长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx2x轴交于点A,与y轴交于点BABBC,且点Cx轴上,若抛物线yax2bxcC为顶点,且经过点B,求这条抛物线对应的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:

该社团2017年获奖学生人数占近五年获奖总人数的百分比为_____,补全折线统计图;

该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间 每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x10的正整数倍).

1)设一天订住的房间数为y,直接写出yx的函数关系式及自变量x的取值范围;

2)设宾馆一天的利润为w元,求wx的函数关系式;

3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=ACAD△ABC的角平分线,点OAB的中点,连接DO并延长到点E,使OE=OD,连接AEBE

1)求证:四边形AEBD是矩形;

2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.

查看答案和解析>>

同步练习册答案