【题目】“8字”的性质及应用:
(1)如图1,AD、BC相交于点O,得到一个“8字”ABCD,求证:∠A+∠B=∠C+∠D.
(2)如图2,∠ABC和∠ADC的平分线相交于点E,利用(1)中的结论证明:∠E=(∠A+∠C).
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据三角形的内角和定理和对顶角相等即可证∠A+∠B=∠C+∠D;
(2)根据角平分线的定义可得:∠ABE=∠EBC,∠CDE=∠EDA,再根据(1)中结论列出两个等式,将两个等式相加即可证出∠E=(∠A+∠C).
证明:(1)∵∠A+∠B=180°-∠AOB,∠C+∠D=180°-∠COD,∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(2)∵∠ABC和∠ADC的平分线相交于点E,
∴∠ABE=∠EBC,∠CDE=∠EDA,
由(1)的结论可知:∠A+∠ABE=∠E+∠EDA①,∠C+∠CDE=∠E+∠EBC②,
①+②得:∠A+∠ABE+∠C+∠CDE=∠E+∠EDA+∠E+∠EBC,
∴∠A+∠C=2∠E,
∴∠E=(∠A+∠C).
科目:初中数学 来源: 题型:
【题目】如图,O是等边三角形的旋转中心,∠EOF=120°,∠EOF绕点O进行旋转,在旋转过程中,OE与OF与△ABC的边构成的图形的面积( )
A. 等于△ABC面积的 B. 等于△ABC面积的
C. 等于△ABC面积的 D. 不能确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是( )
A. (-3,1) B. (3,-1) C. (-1,3) D. (1,-3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正八边形ABCDEFGH的边长为a,I、J、K、L分别是各自所在边的中点,且四边形IJKL是正方形,则正方形IJKL的边长为________(用含a的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】超市水果货架上有四个苹果,重量分别是100 g、110 g、120 g和125 g.
(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是 ;
(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232 g的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1,图2是两张形状和大小完全相同的正方形网格纸,正方形网格中每个小正方形的边长为1,线段AC的两个端点均在小正方形的顶点上.
(1)在图1中画出△ABC,使△ABC是以AC为腰的等腰直角三角形,点B在小正方形的顶点上;
(2)在图2中画出△ADC,使△ADC是以AD为腰的等腰三角形,点D在小正方形的顶点上,且△ADC的面积为10.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=-x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.
(1)求y与x的函数表达式;
(2)若改造后观花道的面积为13m2,求x的值;
(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
问题情境
在学习了《勾股定理》和《实数》后,某班同学以“已知三角形三边的长度,求三角形面积”为主题开展了数学活动.
操作发现
“毕达哥拉斯”小组的同学想到借助正方形网格解决问题.如图1是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C、A,他们借助此图求出了△ABC的面积.
(1)在图1中,所画的△ABC的三边长分别是AB= ,BC= ,AC= ; △ABC的面积为 .
实践探究
(2)在图2所示的正方形网格中画出△DEF(顶点都在格点上),使DE=,DF=, EF=,并写出△DEF的面积.
继续探究
“秦九韶”小组的同学想到借助曾经阅读的数学资料: 已知三角形的三边长分别为a、b、c,求其面积,对此问题中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron,约公元50年),在他的著作《度量》一书中,给出了求其面积的海伦公式:
我国南宋时期数学家秦九韶(约1202 ~1261),给出了著名的秦九韶公式:
(3)一个三角形的三边长依次为,,,请你从上述材料中选用适当的公式 求这个三角形的面积.(写出计算过程)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com