精英家教网 > 初中数学 > 题目详情

【题目】已知直线y=﹣ x+3与x轴、y轴分别交于A、B两点,设O为坐标原点.
(1)求∠ABO的正切值;
(2)如果点A向左平移12个单位到点C,直线l过点C且与直线y=﹣ x+3平行,求直线l的解析式.

【答案】
(1)

解:∵直线y=﹣ x+3与x轴、y轴分别交于A、B两点,

∴A(6,0),B(0,3),

∴OA=6,OB=3,

∵∠AOB=90°,

∴tan∠ABO= = =2;


(2)

解:将点A向左平移12个单位到点C,

∴C(﹣6,0),

∵直线l过点C且与直线y=﹣ x+3平行,

设直线l的解析式为y=﹣ x+b,

把C(﹣6,0)代入y=﹣ x+b得0=﹣ (﹣6)+b,

∴b=﹣3,

∴直线l的解析式为y=﹣ x﹣3.


【解析】(1)根据已知条件得到A(6,0),B(0,3),求得OA=6,OB=3,根据三角函数的定义即可得到结论;(2)将点A向左平移12个单位到点C,于是得到C(﹣6,0),设直线l的解析式为y=﹣ x+b,把C(﹣6,0)代入y=﹣ x+b即可得到结论.
【考点精析】本题主要考查了坐标与图形变化-平移和解直角三角形的相关知识点,需要掌握新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等;解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:长宽比为:1(n为正整数)的矩形称为矩形.
下面,我们通过折叠的方式折出一个矩形,如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH.
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF.
则四边形BCEF为矩形.
证明:设正方形ABCD的边长为1,则BD==
由折叠性质可知BG=BC=1,∠AFE=∠BFE=90°,则四边形BCEF为矩形.
∴∠A=∠BFE.
∴EF∥AD.
=,即=
∴BF=
∴BC:BF=1:=:1.
∴四边形BCEF为矩形.
阅读以上内容,回答下列问题:
(1)在图①中,所有与CH相等的线段是 ,tan∠HBC的值是 ;

(2)已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图②,求证:四边形BCMN是矩形;
(3)将图②中的矩形BCMN沿用(2)中的方式操作3次后,得到一个“矩形”,则n的值是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.

(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AGAB=12,求AC的长;

(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是学习一元一次方程应用时,老师出示的问题和两名同学所列的方程,根据图中信息,解答下列问题.

(1)小杰同学所列方程中的x表示什么,小婷同学所列方程中的y表示什么;

(2)两个方程中任选一个,并写出它的等量关系;

(3)解(2)中你所选择的方程,并回答老师提出的问题。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,EF∥BC, = ,EF=3,则CD的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:

(1)将条形统计图补充完整;

(2)扇形图中的“1.5小时”部分圆心角是多少度?

(3)求抽查的学生劳动时间的众数、中位数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两个一次函数y=ax+by=bx+a(a,b为常数,且ab≠0),它们在同一个坐标系中的图象可能是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD,点E是边AD上一点,过点E作EF⊥BC,垂足为点F,将△BEF绕着点E逆时针旋转,使点B落在边BC上的点N处,点F落在边DC上的点M处,如果点M恰好是边DC的中点,那么 的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】列方程解应用题:

甲组的5名工人9月份完成的总工作量比此月人均定额的4倍多30件,乙组的6名工人9月份完成的总工作量比此月人均定额的6倍少30

(1)如果两组工人实际完成的此月人均工作量相等,那么此月人均定额是多少?

(2)如果甲组工人实际完成的此月人均工作量比乙组的多3件,则此月人均定额是多少?

(3)如果甲组工人实际完成的此月人均工作量比乙组的少3件,则此月人均定额是多少?

查看答案和解析>>

同步练习册答案