精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,AB⊙O的直径,AB⊥ACBC⊙ODEAC的中点,EDAB的延长线相交于点F

1)求证:DE⊙O的切线.

2)求证:ABAC=BFDF

【答案】详见解析

【解析】

(1)连接OD、AD,求出CDA=∠BDA=90°,求出∠1=∠4,∠2=∠3,推出∠4+∠3=∠1+∠2=90°,根据切线的判定推出即可;

(2)证△ABD∽△CAD,刘,证△FAD∽△FDB,得,即可得出AB:AC=BF:DF。

证明:(1)连接DO、DA,

∵AB⊙O直径,∴∠CDA=∠BDA=90°。

∵CE=EA,∴DE=EA。∴∠1=∠4。

∵OD=OA,∴∠2=∠3。

∵∠4+∠3=90°,∴∠1+∠2=90°,即:∠EDO=90°。

∴DE⊥OD。

∵OD是半径,∴DE⊙O的切线。

(2)∵∠3+∠DBA=90°,∠3+∠4=90°,

∴∠4=∠DBA。

∵∠CDA=∠BDA=90°,∴△ABD∽△CAD。

∵∠FDB+∠BDO=90°,∠DBO+∠3=90°,

∵OD=OB,∴∠BDO=∠DBO。∴∠3=∠FDB。

∵∠F=∠F,∴△FAD∽△FDB。∴

,即AB:AC=BF:DF。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠BAC90°,AD是高,BE是中线,CF是角平分线,CFADG,交BEH.下列结论:SABESBCEAFG=∠AGFFAG2ACFBHCH.其中所有正确结论的序号是

A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CDAB于点P,AP=2,BP=6,APC=30°,则CD的长为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题正确的个数是

若代数式有意义,则x的取值范围为x≤1x≠0

我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.

若反比例函数m为常数),当x0时,yx增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.

若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3y=2x+1y=x2中偶函数的个数为2个.

A1 B2 C3 D4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋里装有分别标有汉字的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.

1)若从中任取一个球,球上的汉字刚好是的概率为多少?

2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成灵秀鄂州的概率P1

3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成灵秀鄂州的概率为P2,指出P1P2的大小关系(请直接写出结论,不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:

(1)边AC,AB,BC的长;

(2)点CAB边的距离;

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,这个图案是3世纪我国汉代数学家赵爽在注解《周髀算经》时给出的,人们称它为赵爽弦图.已知AE=3,BE=2,若向正方形ABCD内随意投掷飞镖(每次均落在正方形ABCD内,且落在正方形ABCD内任何一点的机会均等),则恰好落在正方形EFGH内的概率为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:

劳动时间(时)

频数(人数)

频率

0.5

12

0.12

1

30

0.3

1.5

x

0.4

2

18

y

合计

m

1

(1)统计表中的x=   ,y=   

(2)被调查同学劳动时间的中位数是   时;

(3)请将频数分布直方图补充完整;

(4)求所有被调查同学的平均劳动时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,DBC的中点,过D点的直线GFACF,交AC的平行线BGG点,DE⊥DF,交AB于点E,连结EGEF

1)求证:BGCF

2)请你判断BE+CFEF的大小关系,并说明理由.

查看答案和解析>>

同步练习册答案