【题目】有两个口袋,口袋中装有两个分别标有数字2,3的小球,口袋中装有三个分别标有数字的小球(每个小球质量、大小、材质均相同).小明先从口袋中随机取出一个小球,用表示所取球上的数字;再从口袋中顺次取出两个小球,用表示所取两个小球上的数字之和.
(1)用树状图法或列表法表示小明所取出的三个小球的所有可能结果;
(2)求的值是整数的概率.
科目:初中数学 来源: 题型:
【题目】内接于边于点,连接.
如图1,求证:;
如图2,延长交于点,点在线段上,射线交边于点,连接,若,求证:;
如图3,在的条件下,连接,若,,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=-x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=-x+3交于C、D两点.连接BD、AD.
(1)求m的值.
(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:内接于⊙,连接并延长交于点,交⊙于点,满足.
(1)如图1,求证:;
(2)如图2,连接,点为弧上一点,连接,=,过点作,垂足为点,求证:;
(3)如图3,在(2)的条件下,点为上一点,分别连接,,过点作,交⊙于点,,,连接,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD中,AB=5,连接BD,sin∠ABD=,点P是射线BC上一点(不与点B重合),AP与对角线BD交于点E,连接EC.
(1)求证:AE=CE;
(2)当点P在线段BC上时,设BP=n(0<n<5),求△PEC的面积;(用含n的代数式表示)
(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,请直接写出BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】材料1:在设计人体雕塑时,存在一个分隔点,使雕塑的上部(腰以上)与下部(腰以下)之比,等于下部与全部(全身)之比,可以增加视觉美观,数学上把这个点叫“黄金分割点”. 为了研究这个点,我们在线段AB上取点C(如图1),点C把AB分成AC和CB两段,其中BC是较小的一段,现要使即可.为了简便起见,设AB=1,AC=x,则CB=1-x,代入,即,也即x2+x-1=0,解之得,.所以=,人们把这个数叫黄金分割数,点C叫“黄金分割点”.
材料2:由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该图形的“黄金分割线”.
(1)如图2,点C是线段AB的黄金分割点(AC>CB),取线段AB的中点O,作点C关于点O的对称点,则;继续取线段AC的中点,作点关于点的对称点,试猜想点是否线段A的黄金分割点,若是,请证明,若不是,请说明理由;
(2)如图3,在平面直角坐标系中, A(-,0),B(1,0),C(4-,2),求△ABC中经过点C的“黄金分割线”解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明根据学习函数的经验,对函数y=x+的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数y=x+的自变量x的取值范围是_____.
(2)下表列出了y与x的几组对应值,请写出m,n的值:m=_____,n=_____;
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | 4 | … | ||
y | … | ﹣ | ﹣ | ﹣2 | ﹣ | ﹣ | m | 2 | n | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当y=﹣时,x=_____.
②写出该函数的一条性质_____.
③若方程x+=t有两个不相等的实数根,则t的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,在一次购物中,张华和李红都想从“微信”、“支付宝”、“银行卡”、“现金”四种支付方式中选一种方式进行支付.
(1)张华用“微信”支付的概率是______.
(2)请用画树状图或列表法求出两人恰好选择同一种支付方式的概率.(其中“微信”、“支付宝”、“银行卡”、“现金”分别用字母“A”“B”“C”“D”代替)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过点A(4,0)、B(﹣2,0)、C(0,﹣4)
(1)求抛物线的解析式;
(2)在抛物线AC段上是否存在点M,使△ACM的面积为3,求出在此时M的坐标,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com