精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=-x6的图像与反比例函数y(k>0)的图像交于AB两点,过A点作x轴的垂线,垂足为M,△AOM的面积为2.5.

1)求反比例函数的表达式;

2)在y轴上有一点P,当PAPB的值最小时,求点P的坐标.

【答案】1)反比例函数的表达式为y;(2P(0).

【解析】

1)根据反比例系数和三角形面积关系,求出k,即可;(2)作点A关于y轴的对称点C,连接BCy轴于P点.由两个函数解析式组成方程组,求出交点坐标,再用待定系数法求直线BC的解析式.,再求出P的坐标.

解:(1)Am,n),则

SAOM2.5,∴|k|2.5.

k>0,∴k5,∴反比例函数的表达式为y

(2) 如图,作点A关于y轴的对称点C,连接BCy轴于P点.

AB是两个函数图象的交点,

A(15)B(51),∴C(15)

yBCkxb

代入BC两点坐标得

解得

yBC=-x,∴P(0)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了解全区5000名初中毕业生的体重情况,随机抽测了200名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.020.030.040.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为___人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A10)、C(﹣23)两点,与y轴交于点N,其顶点为D

1)求抛物线及直线AC的函数关系式;

2)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值及此时点P的坐标;

3)在对称轴上是否存在一点M,使ANM的周长最小.若存在,请求出M点的坐标和ANM周长的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在梯形ABCD中,ADBCAB=BCDCBC,且AD=1DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q

(1)AB的长;

(2)BQ的长为时,请通过计算说明圆P与直线DC的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在电线杆CD上的C处引拉线CECF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆9mB处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点在直线上,点在直线上,若从如图所示的位置出发,沿直线向右匀速运动,直到重合.运动过程中与矩形重合部分的面积随时间变化的图象大致是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A是双曲线k10)上一点,点A的横坐标为1,过点A作平行于y轴的直线,与x轴交于点B,与双曲线k20)交于点C.点Dm0)是x轴上一点,且位于直线AC右侧,EAD的中点.

1)当m4时,求△ACD的面积(用含k1k2的代数式表示);

2)若点E恰好在双曲线k10)上,求m的值;

3)设线段EB的延长线与y轴的负半轴交于点F,当点D的坐标为D20)时,若BDF的面积为1,且CFAD,求k1的值,并直接写出线段CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:

信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;

信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.

根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=-x+1与反比例函数y=(x0)的图象交于点A,与x轴正半轴交于点B,且SAOB=1,则反比例函数解析式为______

查看答案和解析>>

同步练习册答案