精英家教网 > 初中数学 > 题目详情

【题目】阅读材料后解决问题:

计算:(2+1)(22+1)(24+1)(28+1).

经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:

(2+1)(22+1)(24+1)(28+1)

=(2﹣1)(2+1)(22+1)(24+1)(28+1)

=(22﹣1)(22+1)(24+1)(28+1)

=(24﹣1)(24+1)(28+1)

=(28﹣1)(28+1)

=216﹣1

请你根据以上解决问题的方法,试着解决:

(3+1)(32+1)(34+1)(38+1)…(364+1)=__

【答案】

【解析】

直接利用平方差公式将原式变形进而得出答案.

(3+1)(32+1)(34+1)(38+1)…(364+1)

=(3﹣1)(3+1)(32+1)(34+1)(38+1)…(364+1)

=(32﹣1)(32+1)(34+1)(38+1)…(364+1)

=

故答案是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.
(1)求证:∠DAC=∠DCE;
(2)若AB=2,sin∠D= , 求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,AB是⊙O的直径.PC是⊙O的切线,C为切点,PD⊥AB于点D,交AC于点E.
(1)求证:∠PCE=∠PEC;
(2)若AB=10,ED= , sinA= , 求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.
(1)求cos∠ADE的值;
(2)当DE=DC时,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在ABC中,AB=AC

1)若DAC的中点,BD把三角形的周长分为24cm30cm两部分,求ABC三边的长;

2)若DAC上一点,试说明ACBD+DC)。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,ABx轴,点A的坐标为(5,3),己知直线l:y= x﹣2

(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值

(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求ABE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在这次评价中,一共抽查了 名学生;

(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;

(3)请将频数分布直方图补充完整;

(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长是4 的平分线交DC于点E.若点PQ分别是ADAE上的动点,则的最小值是(  )

A. 2 B. 4 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为60cm的正方形硬纸片,剪掉阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使A、B、C、D四个点重合于图中的点P,正好形成一个底面是正方形的长方体包装盒.

(1)若折叠后长方体底面正方形的面积为1250cm2 , 求长方体包装盒的高;
(2)设剪掉的等腰直角三角形的直角边长为x(cm),长方体的侧面积为S(cm2),求S与x的函数关系式,并求x为何值时,S的值最大.

查看答案和解析>>

同步练习册答案