精英家教网 > 初中数学 > 题目详情

【题目】若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“奇妙四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据“奇妙四边形”对角线互相垂直的特征可得“奇妙四边形”的一个重要性质:“奇妙四边形”的面积等于两条对角线乘积的一半.根据以上信息回答:

(1)矩形“奇妙四边形”(填“是”或“不是”);
(2)如图2,已知⊙O的内接四边形ABCD是“奇妙四边形”,若⊙O的半径为6,∠BCD=60°.求“奇妙四边形”ABCD的面积;
(3)如图3,已知⊙O的内接四边形ABCD是“奇妙四边形”作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.

【答案】
(1)不是
(2)解:连结OB、OD,作OH⊥BD于H,如图2,则BH=DH,

∵∠BOD=2∠BCD=2×60°=120°,

∴∠OBD=30°,

在Rt△OBH中,∵∠OBH=30°,

∴OH= OB=3,

∴BH= OH=3

∵BD=2BH=6

∴AC=BD=6

∴“奇妙四边形”ABCD的面积= ×6 ×6 =54


(3)解:OM= AD.理由如下:

连结OB、OC、OA、OD,作OE⊥AD于E,如图3,

∵OE⊥AD,

∴AE=DE,

∵∠BOC=2∠BAC,

而∠BOC=2∠BOM,

∴∠BOM=∠BAC,

同理可得∠AOE=∠ABD,

∵BD⊥AC,

∴∠BAC+∠ABD=90°,

∴∠BOM+∠AOE=90°,

∵∠BOM+∠OBM=90°,

∴∠OBM=∠AOE,

在△BOM和△OAE中

∴△BOM≌△OAE,

∴OM=AE,

∴OM= AD.


【解析】解:(1)矩形的对角线相等但不垂直,所以矩形不是“奇妙四边形”;
故答案为不是;
(1)根据矩形的性质和“奇妙四边形”的定义进行判断;(2)连结OB、OD,作OH⊥BD于H,如图2,根据垂径定理得到BH=DH,根据圆周角定理得到∠BOD=2∠BCD=120°,则利用等腰三角形的性质得∠OBD=30°,在Rt△OBH中可计算出BH= OH=3 ,BD=2BH=6 ,则AC=BD=6 ,然后根据奇妙四边形”的面积等于两条对角线乘积的一半求解;(3)连结OB、OC、OA、OD,作OE⊥AD于E,如图3,根据垂径定理得到AE=DE,再利用圆周角定理得到∠BOM=∠BAC,∠AOE=∠ABD,再利用等角的余角相等得到∠OBM=∠AOE,则可证明△BOM≌△OAE得到OM=AE,于是有OM= AD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.

(1)怎样围才能使矩形场地的面积为750m2
(2)能否使所围矩形场地的面积为810m2 , 为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+3的对称轴是直线x=1.
(1)求证:2a+b=0;
(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列函数图象中,当x>0时,y随x的增大而减小的是(
A.y=﹣
B.y=x
C.y=x2
D.y=﹣(x+1)2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:

(1)求出函数解析式;
(2)当x为何值时,y<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF= ,BD=4,则菱形ABCD的周长为(

A.4
B.4
C.4
D.28

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+mx+m﹣4经过点A(5,﹣5),若抛物线顶点为P.

(1)求点P的坐标;
(2)在直线OA上方的抛物线上任取一点M,连接MO、MA,求△MOA的面积取得最大时的点M坐标;
(3)如图1,将原抛物线沿射线OP方向进行平移得到新的抛物线,新抛物线与射线OP交于C、D两点.试问线段CD的长度是否为定值,若是请求出这个定值;若不是请说明理由.(提示:若点C(x1 , y1),D(x2 , y2),则CD的长度d=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的面积为3cm2 , E为BC边上一点,∠BAE=30°,F为AE的中点,过点F作直线分别与AB,DC相交于点M,N.若MN=AE,则AM的长等于 cm.

查看答案和解析>>

同步练习册答案