【题目】已知抛物线:y=x2+2(a-1)x+a2-2a(a>0), P(2,3)在此抛物线上
(1)求该抛物线的解析式
(2)求直线 y=2x-2 与此抛物线的公共点个数;若有公共点,求出公共点的坐标.
科目:初中数学 来源: 题型:
【题目】如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.
(1)求证:四边形ADEF是平行四边形;
(2)若∠ABC=60°,BD=6,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,AD∥BC,BC=18,DB=DC=15,点E、F分别在线段BD、CD上,DE=DF=5.AE的延长线交边BC于点G,AF交BD于点N、其延长线交BC的延长线于点H.
(1)求证:BG=CH;
(2)设AD=x,△ADN的面积为y,求y关于x的函数解析式,并写出它的定义域;
(3)联结FG,当△HFG与△ADN相似时,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+c与x轴交于点A(-1,0),B(3,0),与y轴交于点C(0,3),顶点为G.
(1)求抛物线和直线AC的解析式;
(2)如图1,设E(m,0)为x正半轴上的一个动点,若△CGE和△CGO的面积满足S△CGE=S△CGO,求点E的坐标;
(3)如图2,设点P从点A出发,以每秒1个单位长度的速度沿x轴向右运动,运动时间为ts,点M为射线AC上一动点,过点M作MN∥x轴交抛物线对称轴右侧部分于点N.试探究点P在运动过程中,是否存在以P,M,N为顶点的三角形为等腰直角三角形,若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数图象过A,B,C三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.
(1)求点C的坐标;
(2)求二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价2元收费;若每月用水量超过14吨,则超过部分每吨按市场价3.5元收费.小明家2月份用水20吨,交水费49元;3月份用水18吨,交水费42元.
(1)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数关系式;
(2)小明家5月份用水30吨,则他家应交水费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是⊙O上的一个点,⊙P与⊙O的一个交点是E,⊙O的弦AB(或延长线)与⊙P相切,C是切点,AE(或延长线)交⊙P于点F,连接PA、PB,设⊙O的半径为R,⊙P的半径为r(R>r),
(1)如图1,求证:PAPB=2rR;
(2)如图2,当切点C在⊙O的外部时,(1)中的结论是否成立,试证明之;
(3)探究(图2)已知PA=10,PB=4,R=2r,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1、x2是一元二次方程2x2-2x+m+1=0的两个实根.
(1)求实数m的取值范围;
(2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线与轴交于A、B两点,与轴交于点C,直线经过A、C两点.
(1)求抛物线的解析式;
(2)点N是轴上的动点,过点N作轴的垂线,交抛物线与点M,交直线AC于点H.
①点D在线段OC上,连结AD、BD,当时,求的最小值;
②当时,将直线AD绕点A旋转,使直线AD与轴交于点P,请直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com