精英家教网 > 初中数学 > 题目详情

【题目】已知正方形ABCD的边长为5,EBC边上运动,DE的中点G,EGE顺时针旋转90°EF,问CE为多少时A、C、F在一条直线上(  )

A. B. C. D.

【答案】C

【解析】

首先延长BC,做FNBC,构造直角三角形,利用三角形相似的判定,得出RtFNERtECD,再利用相似比得出,运用正方形性质,得出CNF是等腰直角三角形,从而求出CE.

FBC的垂线,交BC延长线于N点,

∵∠DCE=ENF=90°,DEC+NEF=90°,NEF+EFN=90°,

∴∠DEC=EFN,

RtFNERtECD,

DE的中点G,EGE顺时针旋转90°EF,

∴两三角形相似比为1:2,

∴可以得到CE=2NF,

AC平分正方形直角,

∴∠NFC=45°,

∴△CNF是等腰直角三角形,

CN=NF,

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC是等腰三角形,ABAC,点DAB上一点,过点DDEBCBC于点E,交CA延长线于点F

1)证明:ADF是等腰三角形;

2)若∠B60°BD4AD2,求EC的长,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABD和△BCD都是等边三角形,EF分别是边ADCD上的点,且DECF,连接BEEFFB

求证:(1)△ABE≌△DBF

2)△BEF是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在(

A.在∠A、∠B两内角平分线的交点处

B.ACBC两边垂直平分线的交点处

C.ACBC两边高线的交点处

D.ACBC两边中线的交点处

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC M在△ABC内,点P在线段MC上,∠ABP=2ACM.

(1)若∠PBC=10°,BAC=80°,求∠MPB的值

(2)若点M在底边BC的中线上,且BPAC,试探究∠A与∠ABP之间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,AB=ACDBC的中点,动点E在边AB上(点E不与点AB重合), 动点F在射线AC上,连结DE, DF.

(1)如图1,当∠DEB=DFC=90°时,直接写出DEDF的数量关系;

(2)如图2,当∠DEB+DFC=180°(DEB≠DFC)时,猜想DEDF的数量关系,并证明;

(3)当点E,D,F在同一条直线上时,

①依题意补全图3

②在点E运动的过程中,是否存在EB=FC 存在不存在.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=CBD.

(1)求证:CD是⊙O的切线;

(2)若BC=6,tanCDA=,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.

1)求甲,乙两木工组单独修理这批桌凳的天数;

2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AA1,A1A2,A2A3,A3B,AB分别是五个半圆的直径,两只小虫同时出发,以相同的速度从点A到点B,甲虫沿ADA1,A1EA2,A2FA3,A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是(  )

A. 甲先到点B B. 乙先到点B C. 甲、乙同时到点B D. 无法确定谁先到点B

查看答案和解析>>

同步练习册答案