精英家教网 > 初中数学 > 题目详情
5.如图,在直角坐标平面内,已知点A的坐标(-2,0),
(1)图中点B的坐标是(-3,4);
(2)点B关于原点对称的点C的坐标是(3,-4);点A关于y轴对称的点D的坐标是(2,0);
(3)四边形ABDC的面积是16;
(4)在直角坐标平面上找一点E,能满足S△ADE=S△ABC的点E有无数个;
(5)在y轴上找一点F,使S△ADF=S△ABC,那么点F的所有可能位置是(0,4)或(0,-4).

分析 (1)根据图示直接写出答案;
(2)关于原点对称的点的横纵坐标与原来的互为相反数;关于y轴对称的点的坐标,纵坐标不变,横坐标互为相反数;
(3)根据四边形ABDC的面积=S△ABD+S△ADC即可解答;
(4)求出△ADE的高为4,即可解答;
(5)根据三角形的面积公式求得OF的长度即可.

解答 解:(1)根据图示知,点B的坐标为(-3,4);
(2)由(1)知,B(-3,4),
∴点B关于原点对称的点C的坐标是(3,-4);
∵点A的坐标(-2,0),
∴点A关于y轴对称的点D的坐标是(2,0);
(3)如图,

四边形ABDC的面积=S△ABD+S△ADC=4×4×$\frac{1}{2}$+4×4×$\frac{1}{2}$=16.
(4)S△ABC=S△ABO+S△ACO=$2×4×\frac{1}{2}+2×4×\frac{1}{2}$=8,
∵S△ADE=S△ABC
∴4•h•$\frac{1}{2}$=8,
∴h=4,
∵AD在x轴上,
∴直角坐标平面上找一点E,只要点E的纵坐标的绝对值为4即可,
∴直角坐标平面内点E有无数个.
(5)∵S△ADF=S△ABC,AD=4,S△ABC=8
∴OF=4
∴那么点F的所有可能位置是(0,4)或(0,-4).
故答案为:(1)(-3,4);(2)(3,-4),(2,0);(3)16;(4)无数;(5)(0,4)或(0,-4).

点评 本题综合考查了三角形的面积、坐标与图形性质、关于坐标轴对称的点的坐标以及坐标图形变换与旋转.解答此类题目时,要将图形画出来,利用“数形结合”的数学思想解题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.下列说法中不正确的是(  )
A.近似数1.8与1.80表示的意义不一样
B.5.0万精确到万位
C.0.20精确到0.01
D.0.345×105用科学记数法表示为3.45×104

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知一个二次函数,当x=1时,y有最大值8,其图象的形状、开口方向与抛物线y=-2x2相同,则这个二次函数的表达式是(  )
A.y=-2x2-x+3B.y=-2x2+4C.y=-2x2+4x+8D.y=-2x2+4x+6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:在正方形ABCD中,M在AB上,点N在CD上,把正方形ABCD沿MN翻折,使点B落在边AD上的点E处,点C的对应点为P,EP交CD于F.
(1)求证:AE+CF=EF;
(2)连BE,交AC于K,判断AK、CF和BC的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.下午3点,活动结束,在返回途中,汽车需开回距离30公里的驻地,骑车队伍直接返回12公里的学校,二者同时出发.若已知返回时汽车的速度比骑车的速度快32千米/小时,结果同时到达目的地,求汽车和骑车返回时的速度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图所示,一个长方体铁盒的长、宽、高分别是8cm、6cm、24cm,一根长28cm的木棒能否放在这个盒子里?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,两个正方形的面积分别为9和16,则直角三角形的斜边长为5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.对于有理数,规定新运算:x※y=ax+by+xy,其中a、b是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7,(-3)※3=3,则(-6)※3=-7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.已知一个长方体的长、宽、高分别为a,b,c,则这个长方体的体积为abc,这个式子的系数为1,次数为3.

查看答案和解析>>

同步练习册答案