【题目】已知抛物线y=x2﹣4x﹣5经过点A(﹣1,0)、B(5,0)
(1)当0<x<5时,y的取值范围为 ;
(2)点P为抛物线上一点,若△PAB的面积S△PAB=21,请求出点P的坐标.
【答案】(1)﹣9≤y<0;(2)(﹣2,7)或(6,7)或(+2,﹣7)或(﹣+2,﹣7).
【解析】
(1)利用配方法将一般式化为顶点式,即可求出该抛物线的顶点坐标;根据图象即可求解;
(2)设点P的坐标为(x,y).由S△PAB=21,可得y=±7.把y=7与y=﹣7分别代入y=x2﹣4x﹣5,求出x的值,即可得到点P的坐标.
解:(1)∵y=x2﹣4x﹣5=(x﹣2)2﹣9,
∴该抛物线的顶点坐标是(2,﹣9);
由图可得,当0<x<5时,﹣9≤y<0.
故答案为﹣9≤y<0;
(2)设点P的坐标为(x,y).
∵A(﹣1,0)、B(5,0),
∴AB=6.
∵S△PAB=21,
∴×6×|y|=21,
∴|y|=7,
∴y=±7.
①当y=7时,x2﹣4x﹣5=7,解得x1=﹣2,x2=6,此时点P的坐标为(﹣2,7)或(6,7);
②当y=﹣7时,x2﹣4x﹣5=﹣7,解得x1=+2,x2=﹣+2,此时点P的坐标为(+2,﹣7)或(﹣+2,﹣7);
综上所述,所求点P的坐标为(﹣2,7)或(6,7)或(+2,﹣7)或(﹣+2,﹣7).
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴相较于A.B两点,与y轴相交于点C(0,-3),抛物线的对称轴为直线x=1.
(1)求二次函数的解析式;
(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由;
(3)若点M在x轴上,点P在抛物线上,是否存在以点A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请求出所有满足要求的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为5,O是AB边的中点,点E是正方形内一动点,OE=2,将线段CE绕C点逆时针旋转90°得CF,连OF,线段OF的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“文化宜昌全民阅读”活动中,某中学社团“精一读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2012年全校有1000名学生,2013年全校学生人数比2012年增加10%,2014年全校学生人数比2013年增加100人.
(1)求2014年全校学生人数;
(2)2013年全校学生人均阅读量比2012年多1本,阅读总量比2012年增加1700本(注:阅读总量=人均阅读量×人数)
①求2012年全校学生人均阅读量;
②2012年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2012年、2014年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2014年全校学生人均阅读量比2012年增加的百分数也是a,那么2014年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.
(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.
(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把正方形ABCD绕点C按顺时针方向旋转得到正方形此时,点落在对角线AC上,点落在CD的延长线上,交AD于点E,连接、CE.
求证:(1)≌;
(2)直线CE是线段的垂直平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE与DC交于点O.
(基础探究)
(1)求证:PD=PE.
(2)求证:∠DPE=90°
(3)(应用拓展)把正方形ABCD改为菱形,其他条件不变(如图),若PE=3,则PD=________;
若∠ABC=62°,则∠DPE=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com