【题目】如图,已知点C(1,0),直线y=-x+7与两坐标轴分别交于A,B两点,D,E分别是AB, OA上的动点,则△CDE周长的最小值是_____________.
【答案】10
【解析】
点C关于OA的对称点C′(1,0),点C关于直线AB的对称点为C″,连接C′C″与AO交于点E,与AB交于点D,此时△CDE周长最小,这个最小值就是线段C′C″,然后求出C″的坐标即可解决问题.
解:如图,点C关于OA的对称点C′(1,0),点C关于直线AB的对称点C″,
∵直线AB的解析式为y=x+7,
∴设直线CC″的解析式为y=x+b,
代入C(1,0)得:0=1+b,
解得:b=-1,
∴直线CC″的解析式为:y=x1,
联立,解得:,
∴直线AB与直线CC″的交点坐标为K(4,3),
∵K是CC″中点,
∴C″(7,6),
连接C′C″与AO交于点E,与AB交于点D,此时△CDE周长最小,
△CDE的周长=DE+EC+CD=EC′+ED+DC″=C′C″=,
故答案为:10.
科目:初中数学 来源: 题型:
【题目】如图,已知点在的边上,交于,交于,若添加条件________,则四边形是矩形;若添加条件________,则四边形是菱形;若添加条件________,则四边形是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,AB=AC,D是射线BC上一点(点D不与点B重合),连结AD,将AD绕着点D逆时针旋转∠BAC的度数得到AE,连结DE、CE.
(1)当点D在边BC上,求证:△BAD≌△CAE.
(2)当点D在边BC上,若∠BAC=a,求∠DCE的大小.(用含a的代数式表示).
(3)当DE与△ABC的边所在的直线垂直,且∠BAC=40°时,请借助图②,直接写出∠CED的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中国派遣三艘海监船在南海保护中国渔民不受菲律宾的侵犯.在雷达显示图上,标明了三艘海监船的坐标为、、,(单位:海里)三艘海监船安装有相同的探测雷达,雷达的有效探测范围是半径为的圆形区域(只考虑在海平面上的探测).
若在三艘海监船组成的区域内没有探测盲点,则雷达的有效探测半径至少为________海里;
某时刻海面上出现一艘菲律宾海警船,在海监船测得点位于南偏东方向上,同时在海监船测得位于北偏东方向上,海警船正以每小时海里的速度向正西方向移动,我海监船立刻向北偏东方向运动进行拦截,问我海监船至少以多少速度才能在此方向上拦截到菲律宾海警船?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰中,,D为BC的中点,过点C作于点G,过点B作于点B,交CG的延长线于点F,连接DF交AB于点E.
(1)求证:;
(2)求证:AB垂直平分DF;
(3)连接AF,试判断的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在7×7网格中,每个小正方形的边长都为1.
(1)若点A(1,3),C(2,1), ①建立适当的平面直角坐标系;②点B的坐标为( , );
(2)判断△ABC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;
(1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标;
(2)如图(2), 当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE;
(3)如图(3), 若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连结CD交y轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.
(1)求四边形OEBF的面积;
(2)求证:OGBD=EF2;
(3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com