精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点A、B、C、P的坐标分别为(0,1)、(-1,0)、(1,0)、(-1,-1).
(1)求经过A、B、C三点的抛物线的表达式;
(2)以P为位似中心,将△ABC放大,使得放大后的△A1B1C1与△OAB对应线段的比为3:1,请在右图网格中画出放大后的△A1B1C1;(所画△A1B1C1与△ABC在点P同侧);
(3)经过A1、B1、C1三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.
精英家教网
分析:(1)先设出相应函数解析式,把点A坐标代入求解即可;
(2)连接PA并延长,使PA1=3PA,同法得到其余各点,顺次连接即可;
(3)得到过三点的函数解析式,看二次项系数是否相等,相等即可通过平移得到.
解答:解:(1)设经过A、B、C三点的抛物线的表达式y=a(x-1)(x+1),
∵经过(0,1),
∴1=a(-1)×1,
∴a=-1;
∴y=-1×(x-1)(x+1)=-x2+1;

(2)如图所示:
精英家教网
(3)设经过A1、B1、C1三点的抛物线为y=a(x-2)2+5,
把(5,2)代入可得a=-
1
3

∴y=-
1
3
(x-2)2+5.
∵和(1)得到的二次项系数不同,
∴不能通过平移得到.
点评:若有抛物线的顶点或与x轴的交点,求函数解析式用交点式和顶点式比较简便;对应顶点到位似中心的距离等于相似比;两条抛物线可通过平移得到,这两条抛物线的二次项系数相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案