精英家教网 > 初中数学 > 题目详情

【题目】如图,是菱形的对角线,分别是边的中点,连接,则下列结论错误的是( )

A. B. C. 四边形是菱形D. 四边形是菱形

【答案】D

【解析】

根据菱形的性质和三角形的中位线以及菱形的判定可得ACBDDO=BD,再根据三角形的中位线可得EF=BD,即可得出结论

是菱形的对角线,

ACBDDO=BD,

分别是边的中点,

EF=BDEF//BD

EF=DO, ∴选项A正确.

ACBDEF//BD

,∴选项B正确.

是菱形的对角线,

BC=CDOAC的中点

分别是边的中点,

EO//BC//ADFO//CD//ABEO=FO=BC=DC

∴四边形是菱形∴选项C正确.

EF//BDFO//AB

.四边形是平行四边形

∴选项D错误.

故选:D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A﹣10),B50),C0)三点.

1)求抛物线的解析式;

2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;

3)点Mx轴上一动点,在抛物线上是否存在一点N,使以ACMN四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是等边三角形,分别是边上的点,且,且交于点,且,垂足为

(1)求证: ;

(2),求的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个边长不定的正方形ABCD,它的两个相对的顶点AC分别在边长为1的正六边形一组平行的对边上,另外两个顶点BD在正六边形内部(包括边界),则正方形边长a的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线,直线相交于点分别与轴相交于点.

(1)求点P的坐标.

(2),求x的取值范围.

(3)x轴上的一个动点,过x轴的垂线分别交于点,当EF=3时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分10分)如图,在Rt△ABC中,∠ABC=90°AC的垂直平分线分别与ACBCAB的延长线相交于点DEF,且BF=BC⊙O△BEF的外接圆,∠EBF的平分线交EF于点G,交于点H,连接BDFH

1)求证:△ABC≌△EBF

2)试判断BD⊙O的位置关系,并说明理由;

3)若AB=1,求HGHB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:

一个直角三角形的两条直角边分别为,那么这个直角三角形斜边长为____

如图①,,求的长度;

如图②,点在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数(保留痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Ay轴正半轴上一点,过点Ax轴的平行线,交函数的图象于B点,交函数的图象于C,过Cy轴和平行线交BO的延长线于D

(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;

(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;

(3)在(1)条件下,四边形AODC的面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,由6个长为2,宽为1的小矩形组成的大矩形网格,小矩形的顶点称为这个矩形网格的格点,由格点构成的几何图形称为格点图形(如:连接2个格点,得到一条格点线段;连接3个格点,得到一个格点三角形;),请按要求作图(标出所画图形的顶点字母).

1)画出4种不同于示例的平行格点线段;

2)画出4种不同的成轴对称的格点三角形,并标出其对称轴所在线段;

3)画出1个格点正方形,并简要证明.

查看答案和解析>>

同步练习册答案