精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:

一个直角三角形的两条直角边分别为,那么这个直角三角形斜边长为____

如图①,,求的长度;

如图②,点在数轴上表示的数是____请用类似的方法在图2数轴上画出表示数(保留痕迹).

【答案】;;.数轴上画出表示数B.见解析.

【解析】

(1) 根据勾股定理计算;

(2) 根据勾股定理求出AD,根据题意求出BD;

(3) 根据勾股定理计算即可.

∵这一个直角三角形的两条直角边分别为

∴这个直角三角形斜边长为

故答案为:

中,,则由勾股定理得

(3)点A在数轴上表示的数是: ,

由勾股定理得,

O为圆心、OC为半径作弧交x轴于B,则点B即为所求,

故答案为: , B点为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,ABC=90°

(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)

①作线段AC的垂直平分线l,交AC于点O;

②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;

③连接DA、DC

(2)判断四边形ABCD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数图象的顶点在原点,对称轴为轴.一次函数的图象与二次函数的图象交于两点(的左侧),且点坐标为.平行于轴的直线点.

求一次函数与二次函数的解析式;

判断以线段为直径的圆与直线的位置关系,并给出证明;

把二次函数的图象向右平移个单位,再向下平移个单位,二次函数的图象与轴交于两点,一次函数图象交轴于点.当为何值时,过三点的圆的面积最小?最小面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是菱形的对角线,分别是边的中点,连接,则下列结论错误的是( )

A. B. C. 四边形是菱形D. 四边形是菱形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.

(1)求证:1=2;

(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线ABy=kx+b经过点B14)、A50)两点,且与直线y=2x-4交于点C

1)求直线AB的解析式并求出点C的坐标;

2)求出直线y=kx+b、直线y=2x-4及与y轴所围成的三角形面积;

3)现有一点P在直线AB上,过点PPQy轴交直线y=2x-4于点Q,若线段PQ的长为3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(材料阅读)我们曾解决过课本中的这样一道题目:

如图,四边形是正方形,边上一点,延长,使,连接.……

提炼1绕点顺时针旋转90°得到

提炼2

提炼3:旋转、平移、轴对称是图形全等变换的三种方式.

(问题解决)(1)如图,四边形是正方形,边上一点,连接,将沿折叠,点落在处,于点,连接.可得: °三者间的数量关系是 .

2)如图,四边形的面积为8,连接.的长度.

3)如图,在中,,点在边上,.写出间的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴交于点,与轴交于点 ,与直线相交于点

1)求直线 的函数表达式;

2)求 的面积;

3)在 轴上是否存在一点 ,使是等腰三角形.若不存在,请说明理由;若存在,请直接写出点 的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图等腰三角形ABC底边BC的长为4 cm,面积为12 cm2AB的垂直平分线EFAB于点EAC于点FDBC边上的中点M为线段EF上一点BDM的周长最小值为( )

A. 5 cm B. 6 cm C. 8 cm D. 10 cm

查看答案和解析>>

同步练习册答案