【题目】如图,转盘A、B中各个扇形的面积相等,且分别标有数字.小明和小丽玩转转盘游戏,规则如下:分别转动转盘A、B,当转盘停止转动时,将两个指针所指扇形内的数字相乘(若指针停在等分线上,那么重转一次).
(1)用列表法(或树状图)分别求出数字之积为3的倍数及数字之积为5的倍数的概率;
(2)小亮和小丽想用这两个转盘做游戏,他们规定:数字之积为3的倍数时,小亮得3分;数字之积为5的倍数时,小丽得4分,这个游戏对双方公平吗?请说明理由;认为不公平的,请你修改得分规定,使游戏双方公平.
【答案】
(1)解:每次游戏可能出现的所有结果列表如下:
4 | 5 | 6 | |
1 | (1,4) | (1,5) | (1,6) |
2 | (2,4) | (2,5) | (2,6) |
3 | (3,4) | (3,5) | (3,6) |
可得表格中共有9种等可能的结果,
则数字之积为3的倍数的有五种,其概率为 ;数字之积为5的倍数的有三种,其概率为 =
(2)解:这个游戏对双方不公平,
∵小亮平均每次得分为 ×3= ,小丽平均每次得分为 ×4= ,
∵ ≠ ,
∴游戏对双方不公平;
修改得分规定为:若数字之积为3的倍数时,小亮得3分;若数字之积为5的倍数时,小丽得5分
【解析】(1)列表得出所有等可能的情况数,找出3的倍数与5的倍数,分别求出概率即可;(2)该游戏不公平,分别求出两人的得分,比较即可;修改规则使其概率相等即可.
【考点精析】利用列表法与树状图法对题目进行判断即可得到答案,需要熟知当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
科目:初中数学 来源: 题型:
【题目】若点C为线段AB上一点,AB=12,AC=8,点D为直线AB上一点,M、N分别是AB、CD的中点,若MN=10,则线段AD的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角三角形MNC中.CN=MN= ,将△MNC绕点C顺时针旋转60°,得到△ABC,连接AM,BM,BM交AC于点O.
(1)∠NCO的度数为;
(2)求证:△CAM为等边三角形;
(3)连接AN,求线段AN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读思考
我们知道,在数轴上|a|表示数a所对应的点到原点的距离,这是绝对值的几何意义,由此我们可进一步地来研究数轴上任意两个点之间的距离,一般地,如果数轴上两点A、B 对立的数用a,b表示,那么这两个点之间的距离AB=|a﹣b|.也可以用两点中右边的点所表示数的减去左边的点所表示的数来计算,例如:数轴上P,Q两点表示的数分别是﹣1和2,那么P,Q两点之间的距离就是 PQ=2﹣(﹣1)=3.
启发应用
如图,点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0
(1)求线段AB的长;
(2)如图,点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解,
①求线段BC的长;
②在数轴上是否存在点P使PA+PB=BC?若存在,直接写出点P对应的数:若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次数学单元检测,七(8)班某小组六位同学计划平均成绩达到80分,组长在登记成绩时,以80分为基准,超过80分的分数记为正,成绩记录如下:
+10,-2,+15,+8,-13,-7.
(1)本次检测成绩最好的为多少分?
(2)本次检测小组成员中得分最高与最低相差多少分?
(3)该小组实际总成绩与计划相比是超过还是不足,超过或不足多少分?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公园的门票价格如下表:
购票人数 | 1-50人 | 51-100人 | 100人以上 |
每人门票数 | 13元 | 11元 | 9元 |
实验学校初二(1)、二(2)两个班的学生共104人去公园游玩,其中二(1)班的人数不到50人,二(2)班的人数有50多人,经估算,如果两个班都以班为单位分别购票,则一共应付1240元,如果两班联合起来,作为一个团体购票,则可节省不少钱,你能否求出两个班共有多少名学生联合起来购票能省多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、O、B在同一条直线上.
(1)∠AOC比∠BOC大100°,求∠AOC与∠BOC的度数;
(2)在(1)的条件下,若∠BOC与∠BOD互余,求∠BOD的度数;
(3)在(1)(2)的条件下,若OE平分∠AOC,求∠DOE的度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com