【题目】已知x=3是方程 的一个根,求k的值和方程其余的根.
【答案】解:把x=3代入 ,得 + =1,解得k=﹣3.
将k=﹣3代入原方程得: ,
方程两边都乘以x(x+2),得10x﹣3(x+2)=x(x+2),
整理得x2﹣5x+6=0,解得x1=2,x2=3.
检验:x=2时,x(x+2)=8≠0
∴x=2是原方程的根.
x=3时,x(x+2)=15≠0
∴x=3是原方程的根.
∴原方程的根为x1=2,x2=3.
故k=3,方程其余的根为x=2
【解析】根据方程根的定义把x=3代入原方程求出K的值,再把K的值反代回原方程求解检验得出结论。
【考点精析】本题主要考查了分式方程的解和去分母法的相关知识点,需要掌握分式方程无解(转化成整式方程来解,产生了增根;转化的整式方程无解);解的正负情况:先化为整式方程,求整式方程的解;先约后乘公分母,整式方程转化出.特殊情况可换元,去掉分母是出路.求得解后要验根,原留增舍别含糊才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,线段AB的两个端点是A(﹣5,1),B(﹣2,3),平移线段AB得到线段A1B1 , 若点A的对应点A1的坐标为(1,2),则点B的对应点B1的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电子厂商设计了一款制造成本为18元新型电子厂品,投放市场进行试销.经过调查,得到每月销售量y(万件)与销售单价x(元)之间的部分数据如下:
销售单价x(元/件) | … | 20 | 25 | 30 | 35 | … |
每月销售量y(万件) | … | 60 | 50 | 40 | 30 | … |
(1)求出每月销售量y(万件)与销售单价x(元)之间的函数关系式.
(2)求出每月的利润z(万元)与销售单x(元)之间的函数关系式.
(3)根据相关部门规定,这种电子产品的销售利润率不能高于50%,而且该电子厂制造出这种产品每月的制造成本不能超过900万元.那么并求出当销售单价定为多少元时,厂商每月能获得最大利润?最大利润是多少?(利润=售价﹣制造成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红星中学计划组织“春季研修活动,活动组织负责人从公交公司了解到如下租车信息:
车型 | ||
载客量(人/辆) | ||
租金(元/辆) |
校方从实际情况出发,决定租用、型客车共辆,而且租车费用不超过元。
(1)请为校方设计可能的租车方案;
(2)在(1)的条件下,校方根据自愿的原则,统计发现有人参加,请问校方应如何租车,且又省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉揭示了二项和的展开式的各项系数规律,比欧洲的发现早三百年,为纪念杨辉的功绩,世人称如图中右图叫“杨辉三角”。
(1)观察“杨辉三角”规律,依次写出“杨辉三角”第行中从左到右的各数;
(2)请运用幂的意义和多项式乘法法则,按如下要求展开下列各式,以验证“杨辉三角”第四行的规律:展开后各项按字母降幂、升幂排列
(3)解不等式
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.
(1)写出这一函数的表达式.
(2)当气体体积为1 m3时,气压是多少?
(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示:
(1)若∠1=∠B,则_____∥_____,理由是 ;
(2)若∠3=∠5,则_____∥_____,理由是 ;
(3)若∠2=∠4,则_____∥_____,理由是 ;
(4)若∠1=∠D,则_____∥_____,理由是 ;
(5)若∠B+∠BCD=180°,_____∥_____,理由是 ;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……,已知正方形ABCD的面积为S1为1,按上述方法所作的正方形的面积依次为S2,S3,……………,则Sn(n为正整数),那么第n个正方形的面积Sn等于( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com