精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠C=90°,AC=6,BC=8,将点C折叠到AB边的点E处,折痕为AD,则CD的长为


  1. A.
    3
  2. B.
    5
  3. C.
    4
  4. D.
    数学公式
A
分析:首先根据勾股定理计算出AB的长,再根据折叠可得AC=AE=6,CD=DE,BE=10-6=4,然后设CD=DE=x,则BD=8-x,再在直角△BDE中利用勾股定理即可算出x的值.
解答:在直角△ABC中:AB===10,
根据折叠可得AC=AE=6,CD=DE,BE=10-6=4,
设CD=DE=x,则BD=8-x,
在直角△BDE中:(8-x)2=x2+42
解得:x=3.
故选A.
点评:此题主要考查了图形的翻折变换,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案