精英家教网 > 初中数学 > 题目详情

【题目】为了对学生进行多元化的评价,某中学决定对学生进行综合素质评价设该校中学生综合素质评价成绩为x分,满分为100分评价等级与评价成绩x分之间的关系如下表:

中学生综合素质评价成绩

中学生综合素质评价等级

A

B

C

D

现随机抽取该校部分学生的综合素质评价成绩,整理绘制成图、图两幅不完整的统计图请根据相关信息,解答下列问题:

(1)在这次调查中,一共抽取了______名学生,图中等级为D级的扇形的圆心角等于______

(2)补全图中的条形统计图;

(3)若该校共有1200名学生,请你估计该校等级为C级的学生约有多少名.

【答案】(1)100;(2)补图见解析;(3)240人.

【解析】

根据条件图可知(1)一共抽取学生名,图中等级为D级的扇形的圆心角等于;(2)求出等级人数为名,再画图;(3)由(2)估计该校等级为C级的学生约有

解:在这次调查中,一共抽取学生名,

中等级为D级的扇形的圆心角等于

故答案为:100、

等级人数为名,

补全图形如下:

估计该校等级为C级的学生约有人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知△ABC的周长是20,三边分别为a,b,c.

(1)若b是最大边,求b的取值范围;

(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c均为整数,求△ABC的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

小明想探究函数的性质,他借助计算器求出了yx的几组对应值,并在平面直角坐标系中画出了函数图象:

x

-3

-2

-1

1

2

3

y

2.83

1.73

0

0

1.73

2.83

小聪看了一眼就说:你画的图象肯定是错误的.

请回答:小聪判断的理由是_____________.请写出函数的一条性质:_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,不一定成立的是  

A. 四边形ABCD是平行四边形 B.

C. 是等边三角形 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料: 如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:
①当x=﹣3或1时,y1=y2
②当﹣3<x<0或x>1时,y1>y2 , 即通过观察函数的图象,可以得到不等式ax+b> 的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

下面是他的探究过程,请将探究过程补充完整:
将不等式按条件进行转化:
当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>
当x<0时,原不等式可以转化为x2+4x﹣1<
(1)构造函数,画出图象 设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.
双曲线y4= 如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)
(2)确定两个函数图象公共点的横坐标 观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为
(3)借助图象,写出解集 结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在篮球比赛中,某队员连续10场比赛中每场的得分情况如下所示:

场次(场)

1

2

3

4

5

6

7

8

9

10

得分(分)

13

4

13

16

6

19

4

4

7

18

则这10场比赛中该队员得分的中位数和众数分别是(
A.10,4
B.10,13
C.11,4
D.12.5,13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为半圆上一动点,过点C作⊙O的切线l的垂线BD,垂足为D,BD与⊙O交于点E,连接OC,CE,AE,AE交OC于点F.
(1)求证:△CDE≌△EFC;
(2)若AB=4,连接AC. ①当AC=时,四边形OBEC为菱形;
②当AC=时,四边形EDCF为正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′,设Q点运动的时间为t秒,若四边形QPCP′为菱形,则t的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图DCBFACDEAEBDCF.

(1)求证:ABEF

(2)连接AFBE猜想四边形ABEF的形状并说明理由.

查看答案和解析>>

同步练习册答案