精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形AOBC中,点A的坐标为(﹣21),OB5,则点B的坐标为_____

【答案】2

【解析】

如图,过点AAEx轴于EBFx轴于F,根据矩形的性质以及三角函数的关系得到tanOBF,之后利用勾股定理OB2OF2+BF2建立方程求解即可

解:如图,过点AAEx轴于EBFx轴于F

∵点A的坐标为(﹣21),

AE1EO2

∵四边形AOBC是矩形,

∴∠AOB90°,

∴∠AOE+∠BOF90°,

∵∠BOF+∠OBF90°,

∴∠AOE=∠OBF

tanAOEtanOBF

OFx,则BF2x

OB2OF2+BF2

255x2

x

OFBF2

∴点B的坐标为(2),

故答案为(2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).

(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1

(2)将ABC绕原点O逆时针旋转90°后得到A2B2C2,请画出A2B2C2

(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+2x+m+1x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个判断:①当x>0时,y>0;②若a=-1,则b=3;③抛物线上有两点P(x1y1)和Qx2y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点GF分别在x轴和y轴上,当m=2时,四边形EDGF周长的最小值为,其中,判断正确的序号是(

A.①②B.②③C.①③D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班数学兴趣小组经过市场调查,整理出某种商品在第天的售价与销量的相关信息如下表:

观察表格:根据表格解答下列问题:

0

1

2

1

-3

-3

1__________._____________.___________.

2)在下图的直角坐标系中画出函数的图象,并根据图象,直接写出当取什么实数时,不等式成立;

3)该图象与轴两交点从左到右依次分别为,与轴交点为,求过这三个点的外接圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:已知实数mn满足(2m2+n2+1)(2m2+n21)=80,试求2m2+n2的值

解:设2m2+n2t,则原方程变为(t+1)(t1)=80,整理得t2180t281,∴t±9因为2m2+n2≥0,所以2m2+n29

上面这种方法称为换元法,把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂的问题简单化.

根据以上阅读材料内容,解决下列问题,并写出解答过程.

已知实数xy满足(4x2+4y2+3)(4x2+4y23)=27,求x2+y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC的中点为O,点GH在对角线AC上,AGCH,直线GH绕点O逆时针旋转α角,与边ABCD分别相交于点EF(点E不与点AB重合).

1)求证:四边形EHFG是平行四边形;

2)若∠α90°AB9AD3,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.

(1)若围成的面积为180m,试求出自行车车棚的长和宽;

(2)能围成的面积为200m自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B两点,已知点C(2,0).

(1)当直线AB经过点C时,点O到直线AB的距离是

(2)设点P为线段OB的中点,连结PA,PC,若CPA=ABO,则m的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数的图象与反比例函数的图象交于点,与轴交于点,若,且.

1)求反比例函数与一次函数的表达式;

2)若点x轴上一点,是等腰三角形,求点的坐标.

查看答案和解析>>

同步练习册答案