精英家教网 > 初中数学 > 题目详情
如图,AD是△ABC的角平分线,过点D作直线DF∥BA,交△ABC的外角平分线AF于点F,DF与AC交于点E.
求证:DE=EF.
分析:根据角平分线的性质和平行线的性质证得∠3=∠ADE、∠2=∠F后得到DE=EA、EF=EA,从而证得结论.
解答:证明:∵AD是△ABC的角平分线,AF平分△ABC的外角,
∴∠1=∠2,∠3=∠4,
∵DF∥BA,
∴∠4=∠ADE,∠1=∠F
∴∠3=∠ADE,∠2=∠F
∴DE=EA EF=EA
∴DE=EF
点评:本题考查了平行线的性质及等腰三角形的判定与性质,找到第三条线段是证明两条线段相等的常用的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案