【题目】如图,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分别为AB、BC边上的动点,点P从点A开始沿AB方向运动,且速度为每秒1cm,点Q从点B开始B→C方向运动,且速度为每秒2cm,它们同时出发;设出发的时间为t秒.
(1)出发2秒后,求PQ的长;
(2)从出发几秒钟后,△PQB能形成等腰三角形?
(3)在运动过程中,直线PQ能否把原三角形周长分成相等的两部分?若能够,请求出运动时间;若不能够,请说明理由.
【答案】
【1】(1)出发2秒后,BP=6,BQ=4,PQ=;
【2】(2)设时间为t,列方程得
2t=8-1×t,
解得t=;
【3】(3)根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,
设时间为t,列方程得]
2t+(8-1×t)=12,
解得t=4,
当t=4时,点Q运动的路程是4×2=8>6,
所以不能够. ………………………………………………………(4分)
【解析】
(1)我们求出BP、BQ的长,用勾股定理解决即可.
(2)△PQB形成等腰三角形,即BP=BQ,我们可设时间为t,列出方程2t=8-1×t,解方程即得结果.
(3)直线PQ把原三角形周长分成相等的两部分,根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,即解方程即可
解:(1)出发2秒后,BP=6,BQ=4,PQ=;
(2)设时间为t,列方程得
2t=8-1×t,
解得t=;
(3)根据勾股定理可知AC=10cm,即三角形的周长为24cm,则有BP+BQ=12,
设时间为t,列方程得
解得t=4,
当t=4时,点Q运动的路程是4×2=8>6,
所以不能够.
本题重点考查了利用勾股定理解决问题的能力,综合性较强.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E、F是□ABCD对角线AC上的两点,且BE⊥AC,DF⊥AC.
(1)请写出图中全等三角形(不再添加辅助线).
(2)求证:△ABE≌△CDF;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:
类别 | 成本价(元/箱) | 销售价(元/箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)购进甲、乙两种矿泉水各多少箱?
(2)该商场售完这500箱矿泉水,可获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:已知方程a22a1=0,12bb2=0且ab≠1,求的值.
解:由a22a1=0及12bb2=0,
可知a≠0,b≠0,
又∵ab≠1,.
12bb2=0可变形为
,
根据a22a1=0和的特征.
、是方程x22x1=0的两个不相等的实数根,
则,即.
根据阅读材料所提供的方法,完成下面的解答.
已知:3m27m2=0,2n2+7n3=0且mn≠1,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BE和CE分别为△ABC的内角平分线和外角平分线,BE⊥AC于点H,CF平分∠ACB交BE于点F连接AE.则下列结论:①∠ECF=90°;②AE=CE;③;④∠BAC=2∠BEC;⑤∠AEH=∠BCF,正确的个数为( )
A.2个B.3个C.4个D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,∠BAC=45°,BC=2,D是线段BC上的一个动点,点D是关于直线AB、AC的对称点分别为M、N,则线段MN长的最小值是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com