| A. | 一个 | B. | 两个 | C. | 三个 | D. | 四个 |
分析 根据等边三角形的性质得AD=AB=BD=BC=CD,∠ABD=∠ADB=∠CBD=∠CDB=60°,则可利用旋转的定义,要把△ABD旋转后与△BCD重合,可选择B点或D点或BD的中点为旋转中心.
解答 解:∵△ABD和△BCD都是等边三角形,
∴AD=AB=BD=BC=CD,∠ABD=∠ADB=∠CBD=∠CDB=60°,
∴将△ABD绕点B顺时针旋转60°可得到△DBC或将△ABD绕点D逆时针旋转60°可得到△BCD或将△ABD绕BD的中点旋转180°可得到△CDB.
故选C.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com