【题目】已知正方形OABC在平面直角坐标系中,点A,C分别在x轴,y轴的正半轴上,等腰直角三角形OEF的直角顶点O在原点,E,F分别在OA,OC上,且OA=4,OE=2.将△OEF绕点O逆时针旋转,得△OE1F1,点E,F旋转后的对应点为E1,F1.
(Ⅰ)①如图①,求E1F1的长;②如图②,连接CF1,AE1,求证△OAE1≌△OCF1;
(Ⅱ)将△OEF绕点O逆时针旋转一周,当OE1∥CF1时,求点E1的坐标(直接写出结果即可).
【答案】(Ⅰ)①2;②证明见解析;(Ⅱ)(1,)或(1,﹣).
【解析】
(Ⅰ)①由等腰直角三角形的性质和勾股定理求出EF,再由旋转的性质即可得出答案;②根据旋转的性质找到相等的线段,根据SAS定理证明;
(Ⅱ)由于△OEF是等腰Rt△,若OE∥CF,那么CF必与OF垂直;在旋转过程中,E、F的轨迹是以O为圆心,OE(或OF)长为半径的圆,若CF⊥OF,那么CF必为⊙O的切线,且切点为F;可过C作⊙O的切线,那么这两个切点都符合F点的要求,因此对应的E点也有两个;在Rt△OFC中,OF=2,OC=OA=4,可证得∠FCO=30°,即∠EOC=30°,已知了OE的长,通过解直角三角形,得到E点的坐标,由此得解.
(Ⅰ)①解:∵等腰直角三角形OEF的直角顶点O在原点,OE=2,
∴∠EOF=90°,OF=OE=2,
∴EF===2,
∵将△OEF绕点O逆时针旋转,得△OE1F1,
∴E1F1=EF=2;
②证明:∵四边形OABC为正方形,
∴OC=OA.
∵将△OEF绕点O逆时针旋转,得△OE1F1,
∴∠AOE1=∠COF1,
∵△OEF是等腰直角三角形,
∴△OE1F1是等腰直角三角形,
∴OE1=OF1.
在△OAE1和△OCF1中,
∴△OAE1≌△OCF1(SAS);
(Ⅱ)解:∵OE⊥OF,
∴过点F与OE平行的直线有且只有一条,并与OF垂直,
当三角板OEF绕O点逆时针旋转一周时,
则点F在以O为圆心,以OF为半径的圆上.
∴过点F与OF垂直的直线必是圆O的切线,
又点C是圆O外一点,过点C与圆O相切的直线有且只有2条,不妨设为CF1和CF2,
此时,E点分别在E1点和E2点,满足CF1∥OE1,CF2∥OE2.
当切点F1在第二象限时,点E1在第一象限.
在直角三角形CF1O中,OC=4,OF1=2,
cos∠COF1===,
∴∠COF1=60°,
∴∠AOE1=60°.
∴点E1的横坐标=2cos60°=1,
点E1的纵坐标=2sin60°=,
∴点E1的坐标为(1,);
当切点F2在第一象限时,点E2在第四象限.
同理可求:点E2的坐标为(1,﹣).
综上所述,当OE1∥CF1时,点E1的坐标为(1,)或(1,﹣).
科目:初中数学 来源: 题型:
【题目】如图,∠BCD=90°,且BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.
(1)当α=125°时,∠ABC= °;
(2)求证:AC=CE;
(3)若△ABC的外心在其内部,直接写出α的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为( )
A. (1,1) B. (0,) C. () D. (﹣1,1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.
(1)甲组抽到A小区的概率是多少;
(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O中,AC为直径,MA,MB分别切⊙O于点A,B,过点B作BD⊥AC于点E,交⊙O于点D,若BD=MA,则∠AMB的大小为_____度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以正六边形ABCDEF的中心O为原点建立平面直角坐标系,过点A作AP1⊥OB于点P1,再过P1作P1P2⊥OC于点P2,再过P2作P2P3⊥OD于点P3,依次进行……若正六边形的边长为1,则点P2019的横坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3与x轴交于A(﹣1,0)和B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点,分别连接AC、CD、AD.
(1)求抛物线的函数表达式以及顶点D的坐标;
(2)在抛物线上取一点P(不与点C重合),并分别连接PA、PD,当△PAD的面积与△ACD的面积相等时,求点P的坐标;
(3)将(1)中所求得的抛物线沿A、D所在的直线平移,平移后点A的对应点为A′,点C的对应点为C′,点D的对应点为D′,当四边形AA′C′C是菱形时,求此时平移后的抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,BE、CD 相交于点 A,连接 BC,DE,下列条件中不能判断△ABC∽ADE 的是( )
A. ∠B=∠D B. ∠C=∠E C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.
(1)试用含m的代数式表示抛物线的顶点坐标;
(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D.若m>0,CD=8,求m的值;
(3)已知A(2k,0),B(0,k),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时,直接写出k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com