【题目】某数学活动小组在一次活动中,对一个数学问题作如下探究:
问题发现:如图1,在等边三角形ABC中,点M是边BC上任意一点,连接AM,以AM为边作等边三角形AMN,连接CN,证明:BM=CN.
变式探究:如图2,在等腰三角形ABC中,BA=BC,∠ABC=∠α,点M为边BC上任意一点,以AM为腰作等腰三角形AMN,MA=MN,使∠AMN=∠ABC,连接CN,请求出的值.(用含α的式子表示出来)
解决问题:如图3,在正方形ADBC中,点M为边BC上一点,以AM为边作正方形作AMEF,N为正方形AMEF的中心,连接CN,若正方形AMEF的边长为,CN=,请你求正方形ADBC的边长.
【答案】问题发现:证明见解析;变式探究:2sin ;解决问题:3
【解析】
试题分析:问题发现:根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC﹣∠CAM=∠MAN﹣∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
变式探究:根据△ABC,△AMN为等腰三角形,得到=1且∠ABC=∠AMN,证明△ABC~△AMN,得到,利用等腰三角形的性质BA=BC,得到,,证明△ABM~△ACN,得到,作BD⊥AC,如图2,再由AB=BC,得到∠ABD=,根据sin∠ABD=,得到AD=ABsin,则AC=2AD=2ABsin,从而得到=2sin.
解决问题:利用四边形ADBC,AMEF为正方形,得到∠ABC=∠BAC=45°∠MAN=45°,即∠BAM=∠CAN,由,得到,证明△ABM~△ACN,得到,进而得到=cos45°=,求出BM=2,设AC=x,利用勾股定理,在Rt△AMC,AC2+CM2=AM2,即x2+(x﹣2)2=10,解得:x1=3,x2=﹣1(舍去),即可解答.
解:问题发现,
∵△ABC,△AMN为等边三角形,
∴AB=AC,AM=AN且∠BAC=∠MAN=60°
∴∠BAC﹣∠CAM=∠MAN﹣∠CAM,
∴∠BAM=∠CAN,
在△BAM与△CAN中,
,
∴△BAM≌△CAN,
∴BM=CN.
变式探究:∵=1且∠ABC=∠AMN,
∴△ABC~△AMN,
∴,
∵AB=BC,
∴,
∵AM=MN
∴,
∴∠BAM=∠CAN,
∴△ABM~△ACN,
∴,
作BD⊥AC,如图2,
∵AB=BC,
∴∠ABD=,
∴sin∠ABD=,
∴AD=ABsin
∴AC=2AD=2ABsin,
∴=2sin
解决问题:
如图3,连接AB,AN.
∵四边形ADBC,AMEF为正方形,
∴∠ABC=∠BAC=45°∠MAN=45°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
即∠BAM=∠CAN,
∵,
∴,
∴△ABM~△ACN,
∴
∴=cos45°=,
∴
∴BM=2,
设AC=x,
在Rt△AMC,
AC2+CM2=AM2
即x2+(x﹣2)2=10,
解得:x1=3,x2=﹣1(舍去),
答:边长为3.
科目:初中数学 来源: 题型:
【题目】码头工人往一艘轮船上装载货物,装完货物所需时间y(h)与装载速度x(t/h)之间的函数关系如图.
(1)这批货物的质量是多少?写出y与x之间的函数表达式;
(2)中午12:00轮船到达目的地后,接到气象部门预报,晚上8:00港口将受到台风影响必须停止卸货,为确保这批货物安全卸货,如果以8t/h的速度卸货,那么在台风到来之前能否卸完这批货?如果要在台风到来前卸完这批货,那么每小时至少要卸多少吨的货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数y1=k1x+b(k1为常数,且k1≠0)的图象与反比例函数y2=(k2为常数,且k2≠0)的图象相交于A(1,2),B(m,﹣1)两点.
(1)求一次函数和反比例函数的解析式;
(2)若A1(m1,n1),A(m2,n2),A3(m3,n3)为反比例函数图象上的三点,且m1<m2<0<m3,请直接写出n1、n2、n3的大小关系式;
(3)结合图象,请直接写出关于x的不等式k1x+b>的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 (2016新疆生产建设兵团第6题)某小组同学在一周内参加家务劳动时间与人数情况如表所示:
劳动时间(小时) | 2 | 3 | 4 |
人数 | 3 | 2 | 1 |
下列关于“劳动时间”这组数据叙述正确的是( )
A.中位数是2 B.众数是2 C.平均数是3 D.方差是0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①所示,直线L:y=m(x+10)与x轴负半轴、y轴正半轴分别交于A、B两点.
(1)当OA=OB时,试确定直线L的解析式;
(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若AM=8,BN=6,求MN的长;
(3)当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,如图③.
问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值?若是,请求出其值;若不是,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某区新教师招聘中,七位评委独立给出分数,得到一列数.若去掉一个最高分和一个最低分,得到一列新数,那么这两列数的相关统计量中,一定相等的是( )
A.中位数
B.众数
C.方差
D.平均数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用四舍五入法对2.098176取近似值,其中正确的是( )
A. 2.09(精确到0.01) B. 2.098(精确到千分位)
C. 2.0(精确到十分位) D. 2.0981(精确到0.0001)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在□ABCD中, ∠B—∠A=30°,则∠A、∠B、∠C、∠D的度数分别是 ( )
A、95°、85°、95°、85° B、85°、95°、8 5°、95°
C、105°、75°、105°、75° D、75°、105°、75°、105°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com