精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形

(1)求该抛物线的解析式;
(2)求点P的坐标;
(3)求证:CE=EF;
(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+=(+1)2].

【答案】
(1)

解:设抛物线的表达式为y=a(x﹣2)2+1,将点A(0,2)代入,得a(0﹣2)2+1=2,

解这个方程,得a=

∴抛物线的表达式为=


(2)

解:将x=2代入y=x,得y=2

∴点C的坐标为(2,2)即CG=2,

∵△PCQ为等边三角形

∴∠CQP=60°,CQ=PQ,

∵PQ⊥x轴,

∴∠CQG=30°,

∴CQ=4,GQ=

∴OQ=2+,PQ=4,

将y=4代入,得4=,

解这个方程,得x1=2+=OQ,x2=2﹣<0(不合题意,舍去).

∴点P的坐标为(2+,4);


(3)

证明:

把y=x代入y=,得x=,

解这个方程,得x1=4+,x2=4﹣<2(不合题意,舍去)

∴y=4+=EF

∴点E的坐标为(4+,4+

∴OE==4+

又∵OC==

∴CE=OE﹣OC=4+

∴CE=EF;


(4)

解:

不存在.

如图,假设x轴上存在一点,使△CQM≌△CPE,则CM=CE,∠QCM=∠PCE

∵∠QCP=60°,

∴∠MCE=60°

又∵CE=EF,

∴EM=EF,

又∵点E为直线y=x上的点,

∴∠CEF=45°,

∴点M与点F不重合.

∵EF⊥x轴,这与“垂线段最短”矛盾,

∴原假设错误,满足条件的点M不存在.


【解析】(1)根据抛物线的顶点是(2,1),因而设抛物线的表达式为y=a(x﹣2)2+1,把A的坐标代入即可求得函数的解析式;
(2)根据△PCQ为等边三角形,则△CGQ中,∠CQD=30°,CG的长度可以求得,利用直角三角形的性质,即可求得CQ,即等边△CQP的边长,则P的纵坐标代入二次函数的解析式,即可求得P的坐标;
(3)解方程组即可求得E的坐标,则EF的长等于E的纵坐标,OE的长度,利用勾股定理可以求得,同理,OC的长度可以求得,则CE的长度即可求解;
(4)可以利用反证法,假设x轴上存在一点,使△CQM≌△CPE,可以证得EM=EF,即M与F重合,与点E为直线y=x上的点,∠CEF=45°即点M与点F不重合相矛盾,故M不存在.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知函数f(x)= + (1﹣a2)x2﹣ax,其中a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线方程为8x+y﹣2=0,求a的值;
(2)当a≠0时,求函数f(x)(x>0)的单调区间与极值;
(3)若a=1,存在实数m,使得方程f(x)=m恰好有三个不同的解,求实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC=5.
(1)如图1,若sin∠BAC= ,求SABC

(2)若BC=AC,延长BC到D,使CD=BC,点M为BC上一点,连接AM并延长到P,使∠APD=∠B,延长AC交PD于N,连接MN.
①如图2,求证:AM=MN;
②如图3,当PC⊥BC时,则CN的长为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l与⊙O相离.OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.

(1)求证:AB=AC
(2)若PC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,建筑物AB后有一座假山,其坡度为i=1:,山坡上E点处有一凉亭,测得假山坡脚C与建筑物水平距离BC=25米,与凉亭距离CE=20米,某人从建筑物顶端测得E点的俯角为45°,求建筑物AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个18米高的楼顶上有一信号塔DC,李明同学为了测量信号塔的高度,在地面的A处测的信号塔下端D的仰角为30°,然后他正对塔的方向前进了18米到达地面的B处,又测得信号塔顶端C的仰角为60°,CD⊥AB与点E,E、B、A在一条直线上.请你帮李明同学计算出信号塔CD的高度(结果保留整数,≈1.7,≈1.4 ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算结果正确的是(  )
A.2a3+a3=3a6
B.(﹣a)2?a3=﹣a6
C.(﹣?)﹣2=4
D.(﹣2)0=﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有三个内角相等的四边形叫三等角四边形.

(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;
(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.
(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.

查看答案和解析>>

同步练习册答案