精英家教网 > 初中数学 > 题目详情

【题目】△ABC中,AB=AC=5.
(1)如图1,若sin∠BAC= ,求SABC

(2)若BC=AC,延长BC到D,使CD=BC,点M为BC上一点,连接AM并延长到P,使∠APD=∠B,延长AC交PD于N,连接MN.
①如图2,求证:AM=MN;
②如图3,当PC⊥BC时,则CN的长为多少?

【答案】
(1)

解:如图1,作高CD,由AB=AC=5,sin∠BAC= ,得高CD=4,

所以SABC= ×5×4=10


(2)

解:①如图2,过N作NH⊥MD于H点,

∵AB=AC,BC=AC,BC=CD,

∴AB=CD,△ABC为等边三角形,

∴∠B=∠ACB=60°,

∵∠ACB=∠NCD,

∴∠NCD=∠B=60°,

∵∠AND=∠APD+∠PAN,

∠AMB=∠ACB+∠PAN,

又∵∠APD=∠B=∠ACB,

∴∠CND=∠AMB,

∴△ABM≌△DCN,

则BM=CN,AM=DN,

在Rt△CNH中,∠CNH=90°﹣60°=30°,

∴CH= CN,又CD= BD,

CD﹣CH= (BD﹣CN)═ (BD﹣BM),

即DH= DM,

所以MN=DN=AM;

②如图3,过A作AG⊥BD,过N作NH⊥BD,垂足分别为G、H,

则BG= ,AG=

设CH=x,则CN=2x,BM=2x,DH=5﹣x,NH= x,

∵NH∥PC,

,PC=

∵tan∠AMB= = ,tan∠PMC= =

=

∴2x2+10x﹣25=0,

x1= ,x2= (舍去),

∴CN=2x=5 ﹣5.

故答案为:5 ﹣5.


【解析】(1)作AB边上的高CD,根据三角函数可求得CD,则可求得△ABC的面积;(2)①过N作NH⊥MD于H点,可证明△ABM≌△DCN,再结合△ABC为等边三角形及直角三角形的性质可求得△MND为等腰三角形,可证得结论;②作辅助线构建直角三角形,在30°的直角△CNH中设CH=x,表示出DH、GM,并利用平行线,得出比例式,求出PC的长,再利用同角三角函数值列等式,求出x的值,则CN=2x=5 ﹣5.
【考点精析】本题主要考查了等腰三角形的性质的相关知识点,需要掌握等腰三角形的两个底角相等(简称:等边对等角)才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,A,B,C,D为平面四边形ABCD的四个内角,若A+C=180°,AB=6,BC=4,CD=5,AD=5,则四边形ABCD面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a≥0,函数f(x)=(x2﹣2ax)ex
(1)当x为何值时,f(x)取得最小值?证明你的结论;
(2)设f(x)在[﹣1,1]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解某水库养殖鱼的有关情况,从该水库多个不同位置捕捞出200条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,绘制了直方图
(1)根据直方图提供的信息,这组数据的中位数落在范围内;
(2)估计数据落在1.00~1.15中的频率是
(3)将上面捕捞的200条鱼分别作一记号后再放回水库.几天后再从水库的多处不同的位置捕捞150条鱼,其中带有记号的鱼有10条,请根据这一情况估算该水库中鱼的总条数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,两对角线相交于E,且E为对角线BD的中点,∠DAE=30°,∠BCE=120°.若CE=1,BC=2,则AC的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ACB=90°,AC=4,BC=3,若把直角三角形绕边AB所在直线旋转一周,则所得几何体的表面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2 x﹣2(a≠0)的图像与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).

(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形

(1)求该抛物线的解析式;
(2)求点P的坐标;
(3)求证:CE=EF;
(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+=(+1)2].

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第秒.

查看答案和解析>>

同步练习册答案