【题目】阅读下列材料:
解答“已知,且,,确定的取值范围”有如下解,
解:∵,
∴.
又∵,
∴.
∴.
又∵,
∴,①
同理得:.②
由①②得.
∴的取值范围是.
请按照上述方法,完成下列问题:
()已知,且,,求的取值范围.
()已知,,若,且,求得取值范围(结果用含的式子表示).
【答案】(1) 1<x+y<5;(2) a+2<x+y<-a-2.
【解析】整体分析:
(1)先分别确定x,y的取值范围,再根据等式的性质确定x+y的范围;(2)先分别用含a的式子确定x,y的取值范围,再根据等式的性质用含a的式子确定x+y的范围;
解:(1)∵x-y=3,∴x=y+3.
∵x>2,∴y+3>2,∴y>-1.
∵y<1,∴-1<y<1.…①
同理得:2<x<4.…②
由①+②得-1+2<y+x<1+4,
∴x+y的取值范围是1<x+y<5.
(2)∵x-y=a,∴x=y+a.
∵x<-1,∴y+a<-1,∴y<-a-1.
∵y>1,∴1<y<-a-1.…①
同理得:a+1<x<-1.…②
由①+②得1+a+1<y+x<-a-1+(-1),
∴x+y的取值范围是a+2<x+y<-a-2.
科目:初中数学 来源: 题型:
【题目】已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.
(1)请你用树形图或列表法列出所有可能的结果.
(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程x2+2x+2m=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若x1,x2是一元二次方程x2+2x+2m=0的两个根,且x12+x22=8,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一个几何体的形状为直三棱柱,右图是它的主视图和左视图.
(1)请补画出它的俯视图,并标出相关数据;
(2)根据图中所标的尺寸(单位:厘米),计算这个几何体的全面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【探究函数y=x+的图象与性质】
(1)函数y=x+的自变量x的取值范围是________;
(2)下列四个函数图象中,函数y=x+的图象大致是________;
(3)对于函数y=x+,求当x>0时,y的取值范围.请将下列的求解过程补充完整.
解:∵x>0,∴y=x+=()2+=+________.
∵≥0,∴y≥________.
【拓展运用】
(4)若函数y=,求y的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com