精英家教网 > 初中数学 > 题目详情

【题目】小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:

(1)小红家到舅舅家的路程是______米,小红在商店停留了______分钟;

(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/

(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?

【答案】(1)15004(2)小红在1214分钟最快,速度为450/分;(3)小红共行驶了2700米,共用了14分钟.

【解析】

1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;
2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;
3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.

解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.

故答案为:15004

(2)根据图象,12≤x≤14时,直线最陡,

故小红在1214分钟最快,速度为450/分.

(3)读图可得:小红共行驶了1200+600+9002700米,共用了14分钟.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为加强中小学生体育运动,某市第十七届中小学生田径运动会在市体育场举行,体育场主席台侧面如图所示,若顶棚顶端D与看台底端A的连线和地面垂直,测得顶棚CD的长为12米,∠BAC=30°,∠ACD=45°,求看台AC的长.(结果保留一位小数,参考数据: ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,CAB=90°.试求:

(1)AD的长;

(2)ABE的面积;

(3)ACE和△ABE的周长的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC中,AB=AC,A=100°,BD平分ABC,求证:BC=BD+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=x2﹣2x+m的图象与x轴的一个交点的坐标是(﹣1,0),则图象与x轴的另一个交点的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,ABC为等腰直角三角形,∠CAB90°,点A,点B的坐标分别为A0a),Bb0),且ab满足a2+b24a8b+200ACx轴交于点D

1)求AOB的面积;

2)求证:点DAC的中点;

3)点Ex轴的负半轴上的动点,分别以OAAE为直角边在第一、二象限作等腰直角三角形OAN和等腰直角三角形EAM,连接MNy轴于点P,试探究线段OEAP的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.

求证:(1)BE=DF;(2)AF∥CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Napier1550-1617年),纳皮尔发明对数是在指数书写方式之前,直到世纪瑞士数学家欧拉(L.Euler1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若,那么叫做以为底的对数,记作:.比如指数式可以转化为,对数式可以转化为.我们根据对数的定义可得到对数的一个性质:);理由如下:设M=m,则 ,由对数的定义得+ .解决一下问题:

1)将指数式转化为对数式___________;

2)证明);

3)拓展运用:计算=________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达.已知抢修车的速度是摩托车的1.5倍,求这两种车的速度?

查看答案和解析>>

同步练习册答案