精英家教网 > 初中数学 > 题目详情

【题目】如图,ABACO的两条切线,BC为切点,连接CO并延长交AB于点D,交O于点E,连接BE,连接AO

1)求证:AOBE

2)若DE2tanBEO,求DO的长.

【答案】(1))证明见解析;(2)DO=3.

【解析】

1)由切线长定理得到OABC,再由直径所对的圆周角等于90°,即可得到结论;

2)由平行线的性质得到BEO=AOC,设OC=r,解Rt△AOC,得到ACOAcosAOC的值,从而得到EB的值.再由DBEDAO得到对应边成比例,即可得到结论.

(1)连结BC

ABAC是⊙O的两条切线,BC为切点,∴AB=ACOA平分∠BAC,∴OABC,∴∠CFO=90°.

CE是⊙O的直径,∴∠CBE=90°,∴∠CFO=CBE,∴ OABE

(2)OABE∴∠BEO=AOC

tanBEO=,∴tanAOC=

Rt△AOC中,设OC=r,则AC=rOA=r ,∴cosAOC=,∴cosBEC= cosAOC =,∴EB=r

BEOA,∴DBEDAO,∴,∴,∴DO=3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的端点M,N分别在CD,AD上滑动,当DM=______________时,△ABE与以D,M,N为顶点的三角形相似。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数的对称轴为.点在直线上.

(1)求 的值;

(2)若点在二次函数上,求的值;

(3)当二次函数与直线相交于两点时,设左侧的交点为,若,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量建筑物AB的高度,在D处树立标杆CD,标杆的高是2m,在DB上选取观测点E、F,从E测得标杆和建筑物的顶部C、A的仰角分别为58°、45°.从F测得C、A的仰角分别为22°、70°.求建筑物AB的高度(精确到0.1m).(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将一个量角器与一张等边三角形(△ABC)纸片放置成轴对称图形,CDAB,垂足为D,半圆(量角器)的圆心与点D重合,此时,测得顶点C到量角器最高点的距离CE=2cm,将量角器沿DC方向平移1cm,半圆(量角器)恰与△ABC的边ACBC相切,如图2,AB的长为__________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为直线x=,且经过点(2,0),下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(-2,y1),(,y2)是抛物线上的两点,则y1<y2.其中说法正确的有( )

A. ②③④ B. ①②③ C. ①④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农场要建一个长方形的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m

1)若养鸡场面积为200m2,求鸡场靠墙的一边长.

2)养鸡场面积能达到250m2吗?如果能,请给出设计方案;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知顶点为的抛物线轴交于两点,直线过顶点和点

(1)求的值;

(2)求函数的解析式;

(3)抛物线上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是  

A. B. C. D.

查看答案和解析>>

同步练习册答案