精英家教网 > 初中数学 > 题目详情

【题目】如图,已知顶点为的抛物线轴交于两点,直线过顶点和点

(1)求的值;

(2)求函数的解析式;

(3)抛物线上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.

【答案】1)﹣3;(2yx23;(3M的坐标为(36)或(,﹣2).

【解析】

1)把C0,﹣3)代入直线yx+m中解答即可;

2)把y0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;

3)分MBC上方和下方两种情况进行解答即可.

1)将C0,﹣3)代入yx+m,可得:

m=﹣3

2)将y0代入yx3得:

x3

所以点B的坐标为(30),

将(0,﹣3)、(30)代入yax2+b中,可得:

解得:

所以二次函数的解析式为:yx23

3)存在,分以下两种情况:

①若MB上方,设MCx轴于点D

则∠ODC=45°+15°=60°,

ODOCtan30°

DCykx3,代入(0),可得:k

联立两个方程可得:

解得:

所以M136);

②若MB下方,设MCx轴于点E

则∠OEC=45°-15°=30°,

OEOCtan60°=3

ECykx3,代入(30)可得:k

联立两个方程可得:

解得:

所以M2,﹣2).

综上所述M的坐标为(36)或(,﹣2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.

(1)甲、乙两种图书每本价格分别为多少元?

(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABACO的两条切线,BC为切点,连接CO并延长交AB于点D,交O于点E,连接BE,连接AO

1)求证:AOBE

2)若DE2tanBEO,求DO的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.

(1)求证:PB=QC;

(2)若PA=3,PB=4,∠APB=150°,求PC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:一次函数 的图象与坐标轴交于AB两点,点P是函数(0<x<4)图象上任意一点,过点P作PMy轴于点M,连接OP.

(1)当AP为何值时,OPM的面积最大?并求出最大值

(2)当BOP为等腰三角形时试确定点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线Lyx2x-6x轴相交于AB两点(点A在点B的左侧),并与y轴相交于点C

(1)ABC三点的坐标,并求出ABC的面积;

(2)将抛物线向左或向右平移,得到抛物线L,且Lx轴相交于AB两点(点A在点B的左侧),并与y轴交于点C,要使ABCABC的面积相等,求所有满足条件的抛物线的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.

(1)求证:四边形ADEF为平行四边形;

(2)当点D为AB中点时,判断ADEF的形状;

(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y1=ax2+bx+ca≠0)和一次函数y2=kx+nk≠0)的图象如图所示,下面有四个推断:

①二次函数y1有最大值;

②二次函数y1的图象关于直线x=﹣1对称

③当x=﹣2时,二次函数y1的值大于0

④过动点Pm0)且垂直于x轴的直线与y1y2的图象的交点分别为CD,当点C位于点D上方时,m的取值范围是m﹣3m﹣1

以上推断正确的是( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0).动点M,N同时从A点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之停止移动,移动时间记为t秒.连接MN.

(1)求直线BC的解析式;

(2)移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标;

(3)当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.

查看答案和解析>>

同步练习册答案