精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BDBCEF,作BHAF于点H,分别交ACCD于点GP,连结GEGF

1)试判断四边形BEGF的形状并说明理由.

2)求的值.

【答案】1)四边形BEGF是菱形;(21+

【解析】

1)先证明△AHG≌△AHB,得出GH=BH,由线段垂直平分线的性质得出EG=EBFG=FB;再证出∠BEF=BFE,得出EB=FB,因此EG=EB=FB=FG,即可得出结论;

2)设OA=OB=OC=a,菱形BEGF的边长为b,由菱形的性质CG=GF=b,(也可由△OAE≌△OBGOG=OE=abOCCG=ab,得CG=b);然后在RtGOE中,由勾股定理可得ab的关系,通过相似三角形△CGP∽△AGB的对应边成比例得到:,即可得到答案.

1)四边形BEGF是菱形.理由如下:

∵∠GAH=BAHAH=AH,∠AHG=AHB=90°,∴△AHG≌△AHB,∴GH=BH,∴AF是线段BG的垂直平分线,∴EG=EBFG=FB

∵∠BEF=BAF+ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=BFE,∴EB=FB,∴EG=EB=FB=FG,∴四边形BEGF是菱形.

2)设OA=OB=OC=a,菱形BEGF的边长为b

∵四边形BEGF是菱形,∴GFOB,∴∠CGF=COB=90°,∴∠GFC=GCF=45°,∴CG=GF=b

∵四边形ABCD是正方形,∴OA=OB,∠AOE=BOG=90°

BHAF,∴∠GAH+AGH=90°=OBG+AGH,∴∠GAH=OBG,∴△OAE≌△OBG,∴OG=OE=abAE=BG

∵在RtGOE中,GEOG,∴bab),整理得:ab,∴AC=2a=2bAG=ACCG=1b

PCAB,∴△ABG∽△CPG,∴,∴

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,过x轴的垂线,分别交直线CD两点抛物线经过OCD三点.

求抛物线的表达式;

M为直线OD上的一个动点,过Mx轴的垂线交抛物线于点N,问是否存在这样的点M,使得以ACMN为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;

沿CD方向平移C在线段CD上,且不与点D重合,在平移的过程中重叠部分的面积记为S,试求S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(2k+1x+k2+2k0有两个实数根x1x2

1)求实数k的取值范围.

2)是否存在实数k,使得x1x2x12x22=﹣16成立?若存在,请求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以BC为直径的⊙O交的边ABE,点D在⊙O上,且DEBC,连BD并延长交CAF,∠CBF=∠A

1)求证:CA是⊙O的切线;

2)若⊙O的半径为2BD2BE,则DE长为   (直接写答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为

(1)求口袋中黄球的个数;

(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,

求两次摸 出都是红球的概率;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A. 打开电视机,正在播世界杯足球赛是必然事件

B. 掷一枚硬币正面朝上的概率是表示每抛掷硬币2次就有1次正面朝上

C. 一组数据234556的众数和中位数都是5

D. 甲组数据的方差S20.09,乙组数据的方差S20.56,则甲组数据比乙组数据稳定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形都是由相同的小正方形按照一定规律摆放而成,其中第1个图共有3个小正方形,第2个图共有8个小正方形,第3个图共有15个小正方形,第4个图共有24个小正方形,,照此规律排列下去,则第8个图中小正方形的个数是(  )

A. 48B. 63C. 80D. 99

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+c经过点ABC,已知点A(﹣10),点C03).

1)求抛物线的表达式;

2P为线段BC上一点,过点Py轴的平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;

3)设E是抛物线上的一点,在x轴上是否存在点F,使得ACEF为顶点的四边形是平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x+5y轴交于点A,与x轴交于点B.抛物线y=﹣x2+bx+cAB两点.

1)点AB的坐标分别是A   B   

2)求抛物线的解析式;

3)过点AAC平行于x轴,交抛物线于点C,点P为抛物线上的一动点(点PAC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积.

查看答案和解析>>

同步练习册答案