精英家教网 > 初中数学 > 题目详情

【题目】阅读下面材料后,解答问题。

分母中含有未知数的不等式叫分式不等式。如:等。那么如何求出它们的解集呢?

根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负,其字母表达式为:

(1)若,则;若,则

(2)若,则;若,则.

请解答下列问题:

(1)反之:①若 ;②若,则__________;

(2)根据上述规律,求不等式的解集.

【答案】(1)②(2)x>2x<-1.

【解析】

1)根据“异号两数相除,得负”进行分析解答即可;

2)根据“同号两数相除,得正”,把分式不等式转化为不等式组:,解不等式组即可得到原分式不等式的解集.

1)②若,则由“异号两数相除得负”可得:

2)∵

解得:

∴不等式的解集为:.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,任意一点P(a,b)经平移后对应点P1(a﹣2,b+3),将△ABC作同样的平移得到△A1B1C1

(1)求A1,B1,C1的坐标;

(2)指出这一平移的平移方向和平移距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周末小明和同学们去“绿博园”的枫湖坐船,观赏风景;如图,小明正在A处的小船上,B处小船上的游客发现点A在点B的正西方向上,C处小船上的游客发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120米.

(1)求出此时点A到点C的距离;
(2)若小明从A处沿AC方向向C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时小明所乘坐的小船走的距离.(注:结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本,小亮用31元买了同样的钢笔2支和笔记本5.

(1)求每支钢笔和每本笔记本的价格

(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会表现突出的同学,要求笔记本数不少于钢笔数.请问:有多少购买方案?请你一一写出.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,ACBDCE均为等边三角形,点ADE在同一直线上,连接BE,则AEB的度数为__________.

(2)如图2,ACBDCE均为等腰直角三角形,ACB=DCE=90°,点ADE在同一直线上,CMDCEDE边上的高,连接BE.求AEB的度数及线段CMAEBE之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】积极响应政府提出的“绿色发展·碳出行”号召,某社区决定购置一批共享单车,经市场调查知,购买3量男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.

(1)求男式单车和女式单车的单价;

(2)该社区要求男式单比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?怎样购置才能使所需总费用最低,最低费用是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+b与反比例函数y= 的图形交于A(a,4)和B(4,1)两点.
(1)求b,k的值;
(2)在第一象限内,当一次函数y=﹣x+b的值大于反比例函数y= 的值时,直接写出自变量x的取值范围;
(3)将直线y=﹣x+b向下平移m个单位,当直线与双曲线只有一个交点时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,直线y= x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).

(1)求抛物线F1所表示的二次函数的表达式;
(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和SBOC , 记S=S四边形MAOC﹣SBOC , 求S最大时点M的坐标及S的最大值;
(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2 , 点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案