精英家教网 > 初中数学 > 题目详情

【题目】为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

【答案】
(1)解:根据题意得:

15÷10%=150(名).

答;在这项调查中,共调查了150名学生;


(2)解:本项调查中喜欢“立定跳远”的学生人数是;150﹣15﹣60﹣30=45(人),

所占百分比是: ×100%=30%,

画图如下:


(3)解:用A表示男生,B表示女生,画图如下:

共有20种情况,同性别学生的情况是8种,

则刚好抽到同性别学生的概率是 =


【解析】(1)用A的人数除以所占的百分比,即可求出调查的学生数;(2)用抽查的总人数减去A、C、D的人数,求出喜欢“立定跳远”的学生人数,再除以被调查的学生数,求出所占的百分比,再画图即可;(3)用A表示男生,B表示女生,画出树形图,再根据概率公式进行计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

(1)AEFC会平行吗?说明理由

(2)ADBC的位置关系如何?为什么?

(3)BC平分∠DBE?为什么

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC,AP垂直∠ABC的平分线BP于点P.ABC的面积为32cm2,BP=6cm,APB的面积是APC的面积的3AP=________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是(
A.( 2016
B.( 2017
C.( 2016
D.( 2017

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABCAB=AC,点DBC的中点,点EAD上,连接BECE.

(1)求证:BE=CE

(2)如图2,若BE的延长线交AC于点FBF ⊥AC,垂足为F,原题设其它条件不变.求证:∠CAD=∠CBF

(3)(2)的条件下,若BAC=45,判断△CFE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解下列问题:

(1) 分别写出当0≤x≤100和x>100时,yx的函数关系式

(2) 利用函数关系式,说明电力公司采取的收费标准

(3) 若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点DE分别在ABAC上,DEBCFAD上一点,FE的延长线交BC的延长线于点G.求证:

(1)EGH>ADE

(2)EGHADEAAEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料后,解答问题。

分母中含有未知数的不等式叫分式不等式。如:等。那么如何求出它们的解集呢?

根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负,其字母表达式为:

(1)若,则;若,则

(2)若,则;若,则.

请解答下列问题:

(1)反之:①若 ;②若,则__________;

(2)根据上述规律,求不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:

12×231=132×21, 14×451=154×41, 32×253=352×23, 34×473=374×43,45×594=495×54,……

以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.

(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:

①35×   =   ×53; ②   ×682=286×   

(2)设数字对称式左边的两位数的十位数字为m,个位数字为n,且2≤m+n≤9.用含mn的代数式表示数字对称式左边的两位数与三位数的乘积P,并求出P 能被110整除时mn的值.(其中乘法公式))

查看答案和解析>>

同步练习册答案