【题目】在平面直角坐标系中,如果一个点的纵坐标恰好是横坐标倍,那么我们就把这个点定义为“萌点”.
(1)若点的坐标分别为,则四边形四条边上的“萌点”坐标是___.
(2)若一次函数的图像上有一个“萌点”的横坐标是-3,求k值;
(3)若二次函数的图像上没有“萌点”,求k的取值范围.
【答案】(1)(2);(3)
【解析】
分别求出四边形ABCD四条边的直线解析式,设是“萌点”,分别在四条直线上求出满足条件的m;
“萌点”是,代入,即可求出k的值;
设点是二次函数的图象上任意一点,满足萌点条件,因此它不是二次函数上的点,利用确定k的取值范围.
解:设,
将点、代入,
得到,
设,
将点、代入,
得到,
设,
将点、代入,
得到,
设,
将点代入,
,
点的纵坐标恰好是横坐标倍是“萌点”,
设点是“萌点”,
点在上,,
点在上,m不存在,
点在上,,
点在上,m不存在,
综上,四边形ABCD四条边上的“萌点”坐标是和
故答案是和
一次函数的图象上有一个“萌点”的横坐标是,
该“萌点”是,
,
,
设点是二次函数的图象上任意一点,
,
,
点不是二次函数的“萌点”,
,
.
科目:初中数学 来源: 题型:
【题目】如图,已知是圆的直径,是圆上一点,的平分线交于点,交的切线于点,过点作,交的延长线于点.
(1)求证:是的切线;
(2)若,,
①求的值;②若点为上一点,求最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是 ,∠AFB=∠
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ;
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OABC的顶点C在x轴上,函数y=(k>0,x>0)的图象经过点A(2,6),且与边BC交于点D.若点D是边BC的中点,则OC的长为( )
A. 2B. 2.5C. 3.5D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是正方形ABCD两条对角线的交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEFG.
(1)如图1,若正方形OEFG的对角线交点为M,求证:四边形CDME是平行四边形.
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′;
(3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD的边相交于点N,如图3,设旋转角为α(0°<α<180°),若△AON是等腰三角形,请直接写出α的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个水库的水位在某段时间内持续上涨,表记录了连续5小时内6个时间点的水位高度,其中表示时间,表示水位高度.
(小时) | 0 | 1 | 2 | 3 | 4 | 5 | … |
(米) | 3 | 3.3 | 3.6 | 3.9 | 4.2 | 4.5 | … |
(1)通过观察数据,请写出水位高度(米)与时间(小时)的函数解析式(不需要写出定义域);
(2)据估计,这种上涨规律还会持续,并且当水位高度达到8米时,水库报警系统会自动发出警报,请预测再过多久系统会发出警报.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,A、B、C、D是反比例函数y=(x>0)图象上四个整数点(横、纵坐标均为整数),分别过这些点向横轴或纵轴作垂线段,以垂线段所在的正方形(如图)的边长为半径作四分之一圆周的两条弧,组成四个橄榄形(阴影部分),则这四个橄榄形的面积总和是__________(用含π的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是( )
A. 若这5次成绩的中位数为8,则x=8
B. 若这5次成绩的众数是8,则x=8
C. 若这5次成绩的方差为8,则x=8
D. 若这5次成绩的平均成绩是8,则x=8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,反比例函数y=(x<0)的图象经过矩形OABC的对角线AC的中点M,分别与AB,BC交于点D、E,若BD=3,OA=4,则k的值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com