精英家教网 > 初中数学 > 题目详情

【题目】问题提出:

n个环环相扣的圆环形成一串线型链条,当只断开其中的kkn)个环,要求第一次取走一个环,以后每次都只能比前一次多得一个环,则最多能得到的环数n是多少呢?

问题探究:

为了找出nk之间的关系,我们运用一般问题特殊化的方法,从特殊到一般,归纳出解决问题的方法.

探究一:k=1,即断开链条其中的1个环,最多能得到几个环呢?

n=1,2,3时,断开任何一个环,都能满足要求,分次取走;

n=4时,断开第二个环,如图①,第一次取走1环;第二次退回1环换取2环,得2个环;第三次再取回1环,得3个环;第四次再取另1环,得4个环,按要求分4次取走.

n=567时,如图②,图③,图④方式断开,可以用类似上面的方法,按要求分5,6,7次取走.

n=8时,如图⑤,无论断开哪个环,都不可能按要求分次取走.

所以,当断开1个环时,从得到更多环数的角度考虑,把链条分成3部分,分别是1环、2环和4环,最多能得到7个环.

即当k=1时,最多能得到的环数n=1+2+4=1+2×3=1+2×22-1=7.

探究二:k=2,即断开链条其中的2个环,最多能得到几个环呢?

从得到更多环数的角度考虑,按图⑥方式断开,把链条分成5部分,按照类似探究一的方法,按要求分1,2,…23次取走.

所以,当断开2个环时,把链条分成5部分,分别是1环、1环、3环、6环、12环,最多能得到23个环.

即当k=2时,最多能得到的环数n=1+1+3+6+12=2+3×7=2+3×23-1=23.

探究三:k=3,即断开链条其中的3个环,最多能得到几个环呢?

从得到更多环数的角度考虑,按图⑦方式断开,把链条分成7部分,按照类似前面探究的方法,按要求分1,2,…63次取走.

所以,当断开3个环时,从得到更多环数的角度考虑,把链条分成7部分,分别是1环、1环、1环、4环、8环、16环、32环,最多能得到63个环.

即当k=3时,最多能得到的环数n=1+1+1+4+8+16+32=3+4×15=3+4×24-1=63.

探究四:k=4,即断开链条其中的4个环,最多能得到几个环呢?

按照类似前面探究的方法,当断开4个环时,从得到更多环数的角度考虑,把链条分成 部分,分别为 ,最多能得到的环数n= .请画出如图⑥的示意图.

模型建立:

n个环环相扣的圆环形成一串线型链条,断开其中的kkn)个环,从得到更多环数的角度考虑,把链条分成 部分,

分别是:111……1k+1 …… ,最多能得到的环数n =

实际应用:

一天一位财主对雇工说:你给我做两年的工,我每天付给你一个银环.不过,我用一串环环相扣的线型银链付你工钱,但你最多只能断开银链中的6个环.如果你无法做到每天取走一个环,那么你就得不到这两年的工钱,如果银链还有剩余,全部归你!你愿意吗?

聪明的你是否可以运用本题的方法通过计算帮助雇工解决这个难题,雇工最多能得到总环数为多少环的银链?

【答案】探究四:详见解析;模型建立:详见解析;实际应用:雇工最多能得到总环数为895环的银链

【解析】

探究四:根据题意画出图形分析,由此得出答案;

模型建立:由前面当n=1,2,3,4分析可得,从而得出其中的规律;

实际应用:当k6代入n = k+(k+1)×2k+1-1)计算即可.

探究四:k=4,即断开链条其中的4个环,最多能得到几个环呢?

按照类似前面探究的方法,当断开4个环时,从得到更多环数的角度考虑,把链条分成 部分,分别为 1,1,1,1,5,10,20,40,80 ,最多能得到的环数n= 1+1+1+1+5+10+20+40+80=4+5×25-1=159

示意图.

模型建立:有n个环环相扣的圆环形成一串线型链条,断开其中的kkn)个环,从得到更多环数的角度考虑,把链条分成 2k+1 部分,

分别是:111……1k+1 2(k+1) …… 2k(k+1) ,最多能得到的环数n = k+(k+1)×2k+1-1 .

实际应用:

6+7×27-1=895.

因为895大于两年的天数,

所以愿意.

答:雇工最多能得到总环数为895环的银链.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度i=5:12.

(1)求此人所在位置点P的铅直高度.(结果精确到0.1米)

(2)求此人从所在位置点P走到建筑物底部B点的路程(结果精确到0.1米)

测倾器的高度忽略不计,参考数据:tan53°≈,tan63.5°≈2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD,点EAB的中点,AFBC于点F,联结EFEDDFDEAF于点G,且AE2EGED

(1)求证:DEEF

(2)求证:BC22DFBF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为2EF分别为BCCD的中点,连接AEBF交于点G,将△BCF沿BF对折,得到△BPF,延长FPAD于点M,交BA的延长线于点Q.连接BM,下列结论中:AEBFAEBFAQMBF60°.

正确的结论是_____(填正确结论的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠C90°,AC8BC6EF分别在边ACBC,若以EF为直径作圆经过AB上某点D,则EF长的取值范围为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2+bx+c的图象与x轴交于A(﹣30)、B10)两点,与y轴交于点C,且OCOA

1)求抛物线解析式;

2)过直线AC上方的抛物线上一点My轴的平行线,与直线AC交于点N.已知M点的横坐标为m,试用含m的式子表示MN的长及△ACM的面积S,并求当MN的长最大时S的值;

3)如图2D0,﹣2),连接BD,将△OBD绕平面内的某点(记为P)逆时针旋转180°得到△OBD′,OBD的对应点分别为O′、B′、D′.若点B′、D′两点恰好落在抛物线上,求旋转中心点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,以AB为直径作⊙O,分别交ACBC于点DE,点FAC的延长线上,且∠A2CBF

(1)求证:BF与⊙O相切.

(2)BCCF4,求BF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(  )

A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件

B. 明天下雪的概率为,表示明天有半天都在下雪

C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.4,S2=0.6,则甲的射击成绩较稳定

D. 了解一批充电宝的使用寿命,适合用普查的方式

查看答案和解析>>

同步练习册答案