精英家教网 > 初中数学 > 题目详情

【题目】如图,半径OA=2cm,圆心角为90°的扇形OAB中,C为 的中点,D为OB的中点,则图中阴影部分的面积为cm2

【答案】 (π﹣
【解析】解:连接CO,
易得∠COB=45°.
作CE⊥OB于点E,
那么CE=CO×sin45°=
阴影部分面积=S扇形BOC﹣SOCD= ×1× = (π﹣ ).
【考点精析】解答此题的关键在于理解扇形面积计算公式的相关知识,掌握在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2),以及对解直角三角形的理解,了解解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F等于(
A.9.5°
B.19°
C.15°
D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DMDN分别交ABAC于点EF.则下列四个结论:BDADCD;②△AED≌△CFD;③BE+CFEF;④S四边形AEDFBC2.其中正确结论是_____(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知△CAB△CDE中,CA=CB,CD=CE,∠BCA=∠DCE=.BE,BD.

(1)如图1,若∠BCA=60,BDAE交于点F,求∠AFB的度数

(2)如图2,请探究∠EBD,∠AEB之间的关系

(3)如图3,直接写出∠EBD,∠AEB之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CDEF相交.

(1)图中∠1和∠2分别在直线AB,CD_______,并且都在直线EF_____,具有这样位置关系的一对角叫做______

(2)图中∠2和∠8都在直线AB,CD____,并且分别在直线EF___,具有这样位置关系的一对角叫做_____

(3)图中∠2和∠7都在直线AB,CD____,且都在直线EF____,具有这样位置关系的一对角叫做______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AC=6,BD=6,EBC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是(  )

A. 6 B. 3 C. 2 D. 4.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABADAC5,∠DAB=∠DCB90°,则四边形ABCD的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为( )(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠C=90°时,测得AC=2 ,当∠C=120°时,如图2,AC=(
A.2
B.
C.
D.

查看答案和解析>>

同步练习册答案