精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系xOy中,抛物线y=mx2﹣8mx+16m﹣1(m>0)与x轴的交点分别为A(x1 , 0),B(x2 , 0).
(1)求证:抛物线总与x轴有两个不同的交点;
(2)若AB=2,求此抛物线的解析式.
(3)已知x轴上两点C(2,0),D(5,0),若抛物线y=mx2﹣8mx+16m﹣1(m>0)与线段CD有交点,请写出m的取值范围.

【答案】
(1)证明:△=64m2﹣4m(16m﹣1)

=4m,

∵m>0,

∴△>0,

∴抛物线总与x轴有两个不同的交点


(2)解:根据题意,x1、x2为方程mx2﹣8mx+16m﹣1=0的两根,

∴x1+x2=﹣ =8,x1x2=

∵|x1﹣x2|=2,

∴(x1+x22﹣4x1x2=4,

∴82﹣4 =4,

∴m=1,

∴抛物线的解析式为y=x2﹣8x+15


(3)解:抛物线的对称轴为直线x=﹣ =4,

∵抛物线开口向上,

∴当x=2,y≥0时,抛物线与线段CD有交点,

∴4m﹣16m+16m﹣1≥0,

∴m≥


【解析】(1)证明△>0即可;(2)利用抛物线与x轴的交点问题,则x1、x2为方程mx2﹣8mx+16m﹣1=0的两根,利用根与系数的关系得到x1+x2=8,x1x2= ,再变形|x1﹣x2|=2得到(x1+x22﹣4x1x2=4,所以82﹣4 =4,然后解出m即可得到抛物线解析式;(3)先求出抛物线的对称轴为直线x=4,利用函数图象,由于抛物线开口向上,则只要当x=2,y≥0时,抛物线与线段CD有交点,于是得到4m﹣16m+16m﹣1≥0,然后解不等式即可.
【考点精析】关于本题考查的抛物线与坐标轴的交点,需要了解一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(m﹣1)x2+x+1=0有实数根,则m的取值范围是(
A.m
B.m>1
C.m<1
D.m 且m≠1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,DEF分别是△ABC的三边的延长线上一点,且AB=BFBC=CDAC=AE=5cm2,则的值是(

A. 15 cm2 B. 20 cm2 C. 30 cm2 D. 35 cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ABC=90°,O为射线BC上一点,以点O为圆心, OB长为半径作⊙O,将射线BA绕点B按顺时针方向旋转至BA′,若BA′与⊙O相切,则旋转的角度α(0°<α<180°)等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】纸箱厂用如图1所示的长方形和正方形纸板,做成如图2所示的竖式与横式两种长方体形状的有底无盖纸盒.

1)现有正方形纸板172张,长方形纸板330张.若要做两种纸盒共l00个,设做竖式纸盒x个.

根据题意,完成以下表格:

纸盒
纸板

竖式纸盒()

横式纸盒()

x


正方形纸板()


2(100-x)

长方形纸板()

4x


按两种纸盒的数量分,有哪几种生产方案?

2)若有正方形纸板112张,长方形纸板张,做成上述两种纸盒,纸板恰好用完.已知100<<110,则的值是 .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李大爷一年前买入了A、B两种兔子共46只.目前,他所养的这两种兔子数量相同,且A种兔子的数量比买入时减少了3只,B种兔子的数量比买入时减少a只.

(1)则一年前李大爷买入A种兔子________只,目前A、B两种兔子共________只(用含a的代数式表示);

(2)若一年前买入的A种兔子数量多于B种兔子数量,则目前A、B两种兔子共有多少只?

(3)李大爷目前准备卖出30只兔子,已知卖A种兔子可获利15/只,卖B种兔子可获利6/只.如果卖出的A种兔子少于15只,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC,∠ACB=90°,D,E是边AB上两点,CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,BD的长为(

A. 5cm B. 6cm C. 7cm D. 8cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆有客房200间供游客居住,当每间客房的定价为每天180元时,客房恰好全部住满;如果每间客房每天的定价每增加10元,就会减少4间客房出租.设每间客房每天的定价增加x元,宾馆出租的客房为y间.求:
(1)y关于x的函数关系式;
(2)如果某天宾馆客房收入38400元,那么这天每间客房的价格是多少元?

查看答案和解析>>

同步练习册答案