【题目】如图,在平行四边形ABCD中,M、N分别是边AD、BC边上的中点,且△ABM≌△DCM;E、F分别是线段BM、CM的中点.
(1)求证:平行四边形ABCD是矩形.
(2)求证:EF与MN互相垂直.
【答案】(1)见解析;(2)见解析.
【解析】
(1)由平行四边形的性质和全等三角形的性质得出∠A=90°,即可得出结论;
(2)先证明四边形MENF是平行四边形,再证明平行四边形MENF是菱形,即可得出结论.
(1)∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,
∴∠A+∠D=180°,
又∵△ABM≌△DCM,
∴∠A=∠D=90°,
∴平行四边形ABCD是矩形;
(2)∵N、E、F分别是BC、BM、CM的中点,
∴NE∥CM,NE=CM,MF=CM,
∴NE=FM,NE∥FM,
∴四边形MENF是平行四边形,
∵△ABM≌△DCM,
∴BM=CM,
∵E、F分别是BM、CM的中点,
∴ME=MF,
∴平行四边形MENF是菱形,
∴EF与MN互相垂直.
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,△OBC的顶点分别为O(0,0)、B(3,-1)、C(2,1).
(1)以点O(0,0)为位似中心,按比例尺2: 1在位似中心的异侧将△OBC放大为,放大后点B、C两点的对应点分别为、,画出,并写出点为、的坐标。
(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点的坐标。(3)求的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(0,1),(0,2),(1,2),(1,3),(0,3),(﹣1,3)…,根据这个规律探索可得,第90个点的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:
第一步:(计算)尝试满足,使其中,都为正整数.你取的正整数_____,_____;
第二步:(画长为的线段)以第一步中你所取的正整数,为两条直角边长画,使为原点,点落在数轴的正半轴上,,则斜边的长即为.
请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)
第三步:(画表示的点)在下面的数轴上画出表示的点,并描述第三步的画图步骤:__________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在正方形ABCD中,以AB为边向正方形外作等边三角形ABE,连接CE、BD交于点G,连接AG,那么∠AGD的底数是______度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知l1∥l2,射线MN分别和直线l1,l2交于A、B,射线ME分别和直线l1,l2交于C、D,点P在A、B间运动(P与A、B两点不重合),设∠PDB=α,∠PCA=β,∠CPD=γ.
(1)试探索α,β,γ之间有何数量关系?说明理由.
(2)如果BD=3,AB=9,AC=6,并且AC垂直于MN,那么点P运动到什么位置时,△ACP≌△BPD说明理由.
(3)在(2)的条件下,当△ACP≌△BPD时,PC与PD之间有何位置关系,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com