12£®Èô¹ØÓÚx£¬yµÄ·½³Ì×é$\left\{\begin{array}{l}{5x+3ay=16}\\{-bx+4y=15}\end{array}\right.$£¨ÆäÖÐa£¬bÊdz£Êý£©µÄ½âΪ$\left\{\begin{array}{l}{x=6}\\{y=7}\end{array}\right.$£¬Ôò·½³Ì×é $\left\{\begin{array}{l}{5£¨x+1£©+3a£¨x-2y£©=16}\\{-b£¨x+1£©+4£¨x-2y£©=15}\end{array}\right.$µÄ½âΪ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x=6}\\{y=7}\end{array}\right.$B£®$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$C£®$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$D£®$\left\{\begin{array}{l}{x=5.5}\\{y=-1}\end{array}\right.$

·ÖÎö ¸ù¾ÝÌâÒâµÃµ½¹ØÓÚx£¬yµÄ¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{x+1=6¢Ù}\\{x-2y=7¢Ú}\end{array}\right.$£¬½â·½³Ì×é¼´¿ÉÇó½â£®

½â´ð ½â£ºÒÀÌâÒâÓÐ$\left\{\begin{array}{l}{x+1=6¢Ù}\\{x-2y=7¢Ú}\end{array}\right.$£¬
½â¢ÙµÃx=5£¬
°Ñx=5´úÈë¢ÚµÃ5-2y=7£¬½âµÃy=-1£®
¹Ê·½³Ì×é $\left\{\begin{array}{l}{5£¨x+1£©+3a£¨x-2y£©=16}\\{-b£¨x+1£©+4£¨x-2y£©=15}\end{array}\right.$µÄ½âΪ$\left\{\begin{array}{l}{x=5}\\{y=-1}\end{array}\right.$£®
¹ÊÑ¡£ºB£®

µãÆÀ ±¾Ì⿼²éÁ˶þÔªÒ»´Î·½³Ì×éµÄ½â£¬ÄÜʹ·½³Ì×éÖÐÿ¸ö·½³ÌµÄ×óÓÒÁ½±ßÏàµÈµÄδ֪ÊýµÄÖµ¼´ÊÇ·½³Ì×éµÄ½â£®½âÌâµÄ¹Ø¼üÊÇÒªÖªµÀÁ½¸ö·½³Ì×éÖ®¼ä½âµÄ¹ØÏµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®£¨1£©ÒÑam=2£¬an=3£¬Çóam+nµÄÖµ£» a3m-2nµÄÖµ£®
£¨2£©ÒÑ3¡Á9m¡Á27m=321£¬£¨-m2£©3¡Â£¨m3•m2£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®¼ÆËã
£¨1£©-22¡Â$\frac{2}{3}$¡Á£¨1-$\frac{1}{3}$£©2
£¨2£©$\root{3}{-125}$-$\sqrt{16}$+|-3|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®½â·½³Ì£º
£¨1£©£¨x-2£©2=£¨3x+2£©2
£¨2£©2x2-4x-5=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®Èçͼ£¬º¯Êýy=-2xºÍy=kx+4µÄͼÏóÏཻÓÚµãA£¨m£¬3£©£¬Ôò¹ØÓÚµÄx²»µÈʽkx+4+2x¡Ý0µÄ½â¼¯Îªx¡Ý-1.5£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÔÏÂËĸöº¯Êý£¬ÆäͼÏóÒ»¶¨¹ØÓÚÔ­µã¶Ô³ÆµÄÊÇ£¨¡¡¡¡£©
A£®y=2016x+mB£®y=$\frac{x}{2{x}^{2}+1}$+$\frac{m}{x}$C£®y=x2-2016D£®y=$\frac{{x}^{2}}{|x|}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ä³ÖÖÒ©Æ·Ô­¼ÛΪ35Ôª/ºÐ£¬¾­¹ýÁ¬ÐøÁ½´Î½µ¼ÛºóÊÛ¼ÛΪ26Ôª/ºÐ£¬ÉèÆ½¾ùÿ´Î½µ¼ÛµÄ°Ù·ÖÂÊΪx£¬¸ù¾ÝÌâÒâËùÁз½³ÌÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®35£¨1-x£©2=35-26B£®35£¨1-2x£©=26C£®35£¨1-x£©2=26D£®35£¨1-x2£©=26

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®A¡¢BÁ½³ÇÏà¾à600ǧÃ×£¬Ò»Á¾¿Í³µ´ÓA³Ç¿ªÍùB³Ç£¬³µËÙΪÿСʱ80ǧÃ×£¬Í¬Ê±Ò»Á¾³ö×â³µ´ÓB³Ç¿ªÍùA³Ç£¬³µËÙΪš°Ð¡Ê±100ǧÃ×£¬Éè¿Í³µ³öʱ¼äΪt£®
̽¾¿  Èô¿Í³µ¡¢³ö×â³µ¾àB³ÇµÄ¾àÀë·Ö±ðΪy1¡¢y2£¬Ð´³öy1¡¢y2¹ØÓÚtµÄº¯Êý¹ØÏµÊ½£¬²¢¼ÆËãµ±y1=200ǧÃ×ʱ
y2µÄ‚Ž£®
·¢ÏÖ  ÉèµãCÊÇA³ÇÓëB³ÇµÄÖе㣬
£¨1£©Äĸö³µ»áÏȵ½´ïC£¿¸Ã³µµ½´ïCºóÔÙ¾­¹ý¶àÉÙСʱ£¬ÁíÒ»¸ö³µ»áµ½´ïC£¿
£¨2£©ÈôÁ½³µ¿ÛÏà¾à100ǧÃ×ʱ£¬Çóʱ¼ät£®
¾ö²ß  ¼ºÖª¿Í³µºÍ³ö×â³µÕýºÃÔÚA£¬BÖ®¼äµÄ·þÎñÕ¾D´¦ÏàÓö£¬´Ëʱ³ö×â³µ³Ë¿ÍСÍõͻȻ½Óµ½¿ª»á֪ͨ£¬ÐèÒªÁ¢¼´·µ»Ø£¬´ËʱСÍõÓÐÁ½ÖÖÑ¡Ôñ·µ»ØB³ÇµÄ·½°¸£º
·½°¸Ò»£º¼ÌÐø³Ë×ø³ö×â³µ£¬µ½´ïA³ÇºóÁ¢¿Ì·µ»ØB³Ç£¨Éè³ö×â³µµ÷ͷʱ¼äºöÂÔ²»¼Æ£©£»
·½°¸¶þ£º³Ë×ø¿Í³µ·µ»Ø³Ç£®
ÊÔͨ¹ý¼ÆË㣬·ÖÎöСÍõÑ¡ÔñÄÄÖÖ·½Ê½Äܸü¿ìµ½´ïB³Ç£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®£¨¦Ð-1£©0-£¨$\frac{1}{3}$£©-1+$\sqrt{8}$-sin45¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸