分析 根据等边三角形的性质、勾股定理求出高AD,根据重心的性质计算即可.
解答 解:如图,△ABC为等边三角形,过A作AD⊥BC,交BC于点D,
则BD=$\frac{1}{2}$AB=1,AB=2,![]()
在Rt△ABD中,由勾股定理可得:AD=$\sqrt{A{B}^{2}-B{D}^{2}}$=$\sqrt{3}$,
则重心到边的距离是为:$\frac{1}{3}$×$\sqrt{3}$=$\frac{\sqrt{3}}{3}$,
故答案为:$\frac{\sqrt{3}}{3}$.
点评 本题考查的是三角形的重心的概念、等边三角形的性质,掌握重心到顶点的距离与重心到对边中点的距离之比为2:1是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1米 | B. | 1.5米 | C. | 1.6米 | D. | 1.8米 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | C(cot20°-cot50°) | B. | C(cos20°-cos50°) | C. | C(tan50°-tan20°) | D. | C(sin50°-sin20°) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com