精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BCE.

(1)求抛物线的函数表达式;

(2)如图1,求线段DE长度的最大值;

(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.

【答案】(1)y=﹣x2+x+3;(2) a=2时,DE取最大值,最大值是;(3)存在点D,使得△CDE中有一个角与∠CFO相等,点D的横坐标为

【解析】

(1)根据待定系数法,可得函数解析式;

(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得DM,根据相似三角形的判定与性质,可得DE的长,根据二次函数的性质,可得答案;

(3)根据正切函数,可得∠CFO,根据相似三角形的性质,可得GH,BH,根据待定系数法,可得CG的解析式,根据解方程组,可得答案.

(1)由题意,得

解得

抛物线的函数表达式为y=-x2+x+3;

(2)设直线BC的解析是为y=kx+b,

解得

∴y=-x+3,

D(a,-a2+a+3),(0<a<4),过点DDM⊥x轴交BCM点,如图1

M(a,-a+3),

DM=(-a2+a+3)-(-a+3)=-a2+3a,

∵∠DME=∠OCB,∠DEM=∠BOC,

∴△DEM∽△BOC,

∵OB=4,OC=3,

∴BC=5,

∴DE=DM

∴DE=-a2+a=-(a-2)2+

a=2时,DE取最大值,最大值是

(3)假设存在这样的点D,△CDE使得中有一个角与∠CFO相等,

∵点FAB的中点,

∴OF=,tan∠CFO==2,

过点BBG⊥BC,交CD的延长线于G点,过点GGH⊥x轴,垂足为H,如图2

①若∠DCE=∠CFO,

∴tan∠DCE==2,

∴BG=10,

∵△GBH∽BCO,

∴GH=8,BH=6,

∴G(10,8),

设直线CG的解析式为y=kx+b,

解得

∴直线CG的解析式为y=x+3,

解得x=,或x=0(舍).

②若∠CDE=∠CFO,

同理可得BG=,GH=2,BH=

∴G(,2),

同理可得,直线CG的解析是为y=-x+3,

解得x=x=0(舍),

综上所述,存在点D,使得△CDE中有一个角与∠CFO相等,点D的横坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,有一块直角三角形纸片,两直角边AB6BC8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,AB=4,是边上动点(点不与点重合),过点,交边于点.

1)求的大小;

2)若把沿着直线翻折得到,设

如图2,当点落在斜边上时,求的值;

如图3,当点落在外部时,相交于点,如果,写出的函数关系式以及定义域.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.

1)直接写出甲组加工零件的数量y与时间x之间的函数关系式;

2)求乙组加工零件总量a的值;

3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.

(1)求甲、乙两种型号的机器人每台的价格各是多少万元;

(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.

请结合以上信息解答下列问题:

(1)m=

(2)请补全上面的条形统计图;

(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为

(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC为O的直径,B为O上一点,ACB=30°,延长CB至点D,使得CB=BD,过点D作DEAC,垂足E在CA的延长线上,连接BE.

(1)求证:BE是O的切线;

(2)当BE=3时,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CA平分∠DCE,且与BE的延长线相交于点A.

1)若∠A35°,∠B30°,则∠BEC (直接在横线上填写度数)

2)小明经过改变∠A,∠B的度数进行多次探究,得出∠A,∠B,∠BEC三个角之间存在固定的数量关系,请你用一个等式表示出这个关系,并进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:A01),B20),C43

1)在平面直角坐标系中描出点ABC,并画ABC

2)将ABC向左平移3个单位后再向下平移2个单位,得到A1B1C1,请在平面直角坐标系中画出A1B1C1

3)求A1B1C1的面积.

查看答案和解析>>

同步练习册答案