精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标.

【答案】
(1)解:∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).

∴抛物线的解析式为;y=﹣(x﹣3)(x+1),

即y=﹣x2+2x+3


(2)解:∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,

∴抛物线的顶点坐标为:(1,4)


【解析】(1)根据抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0),直接得出抛物线的解析式为;y=﹣(x﹣3)(x+1),再整理即可,(2)根据抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,即可得出答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知反比例函数,(k为常数,k≠1).

1)若点A12)在这个函数的图象上,求k的值;

2)若在这个函数图象的每一分支上,yx的增大而增大,求k的取值范围;

3)若k=13,试判断点B34),C25)是否在这个函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以AB为直径的⊙O分别与BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.

(1)求证:DF⊥AC;

(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小王剪了两张直角三角形纸片,进行了如下的操作:

(1)如图1,将RtABC沿某条直线折叠,使斜边的两个端点AB重合,折痕为DE,若AC=6cm,BC=8cm,求CD的长.

(2)如图2,小王拿出另一张RtABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=6cm,BC=8cm,求CD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列调查中:
①了解一批袋装食品是否含有防腐剂;
②了解某班学生“50 米跑”的成绩;
③了解江苏卫视“非诚勿扰”节目的收视率;
④了解一批灯泡的使用寿命.
适合用普查(全面调查)方式的是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2=(c≠0)的图象相交于点B(3,2)、C(﹣1,n).

(1)求一次函数和反比例函数的解析式;

(2)根据图象,直接写出y1>y2时x的取值范围;

(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列所给出坐标的点中,在第二象限的点是(  )

A. 23B. -2-3C. ( -2 , 3 )D. ( 2 , -3 )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,ADBC,ABC=90o,AB=BC,点E是AB上的点,ECD=45o,连接ED,过D作DFBC于F.

(1)若BEC=75o,FC=4,求梯形ABCD的周长(4分)

(2)求证:ED=BE+FC.6分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形.

(1)如图1,四边形ABCD中,AC平分∠BAD,∠B=∠D.求证:四边形ABCD为等邻边四边形.

(2)如图2,Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB′的方向平移,得到△A′B′C′,连接AA′、BC′,若平移后的四边形ABC′A′是等邻边四边形,且满足BC′=AB,求平移的距离.

(3)如图3,在等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC和BD为四边形对角线,△BCD为等边三角形,试探究AC和AB的数量关系.

查看答案和解析>>

同步练习册答案