【题目】类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做等邻边四边形.
(1)如图1,四边形ABCD中,AC平分∠BAD,∠B=∠D.求证:四边形ABCD为等邻边四边形.
(2)如图2,Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB′的方向平移,得到△A′B′C′,连接AA′、BC′,若平移后的四边形ABC′A′是等邻边四边形,且满足BC′=AB,求平移的距离.
(3)如图3,在等邻边四边形ABCD中,AB=AD,∠BAD+∠BCD=90°,AC和BD为四边形对角线,△BCD为等边三角形,试探究AC和AB的数量关系.
【答案】(1)证明见解析;(2)平移的距离是;(3)AC=AB,理由见解析.
【解析】(1)∵∠BAC=∠DAC ,∠B=∠D,AC=AC
∴△ABC≌△ADC
∴AB=AD
∴四边形ABCD是等邻边四边形.---------------------3’
(2)如图,延长C’B’交AB于点D ,
∵△A’B’C’由△ABC平移得到
∴A’B’∥AB,∠ A’B’C’=∠ABC=90°,C’B’=CB=1
∴B’D⊥AB
∵BB’平分∠ABC,
∴∠B’BD=45°,即B’D=BD。
设B’D=BD=,∴C’D=1+,
∵BC’=AB=2,
∴Rt△BDC’中,,
解得=,(不合题意,舍去)
∴等腰Rt △BB’D中,BB’==
(3)AC=AB。
理由:如图,过A作AE⊥AB,且AE=AB,连接ED,EB
∵AE⊥AB
∴∠EAD+∠BAD=90°
又∵∠BAD+∠BCD=90°,△BCD为等边三角形
∴∠EAD=∠DCB=60°,
∵AE=AB,AB=AD ∴AE=AD
∴△AED为等边三角形,
∴AD=ED,∠EDA=∠BDC=60°
∴∠BDE=∠CDA,∵ED=AD,BD=CD
∴△BDE≌△CDA
∴AC=BE
∵AE=BE,∠BAE=90°, ∴BE=AB,
∴AC=AB
科目:初中数学 来源: 题型:
【题目】“提高节能,倡导低碳”,2012年3月30日“地球一小时”,深圳市民中心附近几座地标性建筑物都相继熄灭.据深圳供电局统计,在短短一小时里,深圳耗电量比上周六同时段相比减少了33900千瓦时,将33900用科学记数法表示为(结果保留2个有效数字)( )
A.3.3×104
B.3.4×103
C.33×103
D.3.4×104
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为( )
A.3×106
B.3×105
C.0.3×106
D.30×104
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com