【题目】如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.
(1)求直线AB和反比例函数的解析式;
(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;
(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.
【答案】(1)y=,y=x﹣1;(2)x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C,点C的坐标为(﹣3,﹣2),(, ),(﹣,﹣).
【解析】试题分析:(1)设反比例函数解析式为y=,将B点坐标代入,求出反比例函数解析式,将A点坐标代入反比例解析式求出m的值,确定出点A的坐标,设直线AB 的解析式为y=ax+b,将A与B的坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;
(2)根据图像写出答案即可;
(3)分3中情况求解,延长AO交双曲线于点C1,由点A与点C1关于原点对称,求出点点C1的坐标;如图,过点C1作BO的平行线,交双曲线于点C2,将OB的解析式与C1C2的解析式联立,求出点C2的坐标;A作OB的平行线,交双曲线于点C3,,将AC3的解析式与反比例函数的解析式联立,求出点C3的坐标
解:(1)设反比例函数解析式为y=,
把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,
∴反比例函数解析式为y=;
把A(3,m)代入y=,可得3m=6,
即m=2,
∴A(3,2),
设直线AB 的解析式为y=ax+b,
把A(3,2),B(﹣2,﹣3)代入,可得,
解得,
∴直线AB 的解析式为y=x﹣1;
(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;
(3)存在点C.
如图所示,延长AO交双曲线于点C1,
∵点A与点C1关于原点对称,
∴AO=C1O,
∴△OBC1的面积等于△OAB的面积,
此时,点C1的坐标为(﹣3,﹣2);
如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,
∴△OBC2的面积等于△OAB的面积,
由B(﹣2,﹣3)可得OB的解析式为y=x,
可设直线C1C2的解析式为y=x+b',
把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',
解得b'=,
∴直线C1C2的解析式为y=x+,
解方程组,可得C2(,);
如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,
设直线AC3的解析式为y=x+ ,
把A(3,2)代入,可得2=×3+ ,
解得=﹣,
∴直线AC3的解析式为y=x﹣,
解方程组,可得C3(﹣,﹣);
综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).
科目:初中数学 来源: 题型:
【题目】(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG。求证:①∠BEA =∠G,② EF=FG。
(2)如图2,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八年级甲班和乙班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球;将两班选手的进球数绘制成如下尚不完整的统计图表:
(1)表格中b=_________.c=_________;并求a的值;
(2)如果要从这两个班中选出一个班代表年级参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2)、D(n,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m+n= ________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八年级380名师生参加户外拓展活动,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表
甲种客车 | 乙种客车 | |
载客量(座/辆) | 60 | 45 |
租金(元/辆) | 550 | 450 |
(1)设租用乙种客车x辆,租车总费用为y元求出y(元)与x(辆)之间的函数表达式;
(2)当乙种客车租用多少辆时,能保障所有的师生能参加户外拓展活动且租车费用最少,最少费用是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE的中点,连接CF,DF.
(1)如图1,当点D在AB上,点E在AC上时
①证明:△BFC是等腰三角形;
②请判断线段CF,DF的关系?并说明理由;
(2)如图2,将图1中的△ADE绕点A旋转到图2位置时,请判断(1)中②的结论是否仍然成立?并证明你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=6,AC=10,AD是BC边上的中线,且AD=4,延长AD到点E,使DE=AD,连接CE.
(1)求证:△AEC是直角三角形.
(2)求BC边的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com