精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).

(1)在图中作出ABC关于y轴对称的A1B1C1

(2)写出点A1,B1,C1的坐标(直接写答案):A1_________;B1________;C1________;

(3)求A1B1C1的面积;

【答案】1)作图见解析; (2(3,2);(4,-3);(1,-1);(3)6.5.

【解析】

(1)根据关于y轴对称点的性质得出各对应点位置进而得出答案;

(2)利用(1)中作画图形,进而得出各点坐标;

(3)利用△ABC所在矩形面积减去△ABC周围三角形面积进而求出即可;

解:(1)如图所示:△A1B1C1,即为所求;

(2)A1 (3,2);B1 (4,-3);C1 (1,-1);

故答案为:(3,2);(4,-3);(1,-1);

(3)△A1B1C1的面积为:3×5-×2×3-×1×5-×2×3=6.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将长方形纸片ABCD沿折痕EF对折,使点C与点A重合,点D落在点G处,如果此时∠BAF刚好等于30°,AD=6,求△AEF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在“双十二”期间,AB两个超市开展促销活动,活动方式如下:

A超市:购物金额打9折后,若超过2000元再优惠300元;

B超市:购物金额打8

某学校计划购买某品牌的篮球做奖品,该品牌的篮球在AB两个超市的标价相同根据商场的活动方式:

(1)若一次性付款4200元购买这种篮球,则在B商场购买的数量比在A商场购买的数量多5请求出这种篮球的标价

(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停下,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是( )

A.当x=2时,y=5
B.矩形MNPQ的面积是20
C.当x=6时,y=10
D.当y= 时,x=3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把△ABC纸片沿DE折叠,当点A在四边形BCDE的外部时,记∠AEB为∠1,∠ADC为∠2,则∠A、∠1与∠2的数量关系,结论正确的是( )

A. ∠1=∠2+∠A B. ∠1=2∠A+∠2

C. ∠1=2∠2+2∠A D. 2∠1=∠2+∠A

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,对角线AC,BD交于点O,E为AB中点,点F在CB的延长线上,且EF∥BD.
(1)求证;四边形OBFE是平行四边形;
(2)当线段AD和BD之间满足什么条件时,四边形OBFE是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,直线y=kx+bx轴交于点A(6,0),与y轴交于点B,与直线y=2x交于点C(a,4).

(1)求点C的坐标及直线AB的表达式;

(2)如图2,在(1)的条件下,过点E作直线lx轴于点E,交直线y=2x于点F,交直线y=kx+b于点G,若点E的坐标是(4,0).

①求CGF的面积;

②直线l上是否存在点P,使OP+BP的值最小?若存在,直接写出点P的坐标;若不存在,说明理由;

(3)若(2)中的点Ex轴上的一个动点,点E的横坐标为m(m>0),当点Ex轴上运动时,探究下列问题:

m取何值时,直线l上存在点Q,使得以A,C,Q为顶点的三角形与AOC全等?请直接写出相应的m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直线AB上任取一点O,过点O作射线OC、OD,使∠COD=100°,当∠AOC=30°时,∠BOD的度数是(

A. 50° B. 80° C. 80°或150° D. 50°或110°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂接受了20天内生产1200GH型电子产品的总任务.已知每台GH型产品由4G型装置和3H型装置配套组成.工厂现有80名工人,每个工人每天能加工6G型装置或3H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的GH型装置数量正好组成GH型产品.

(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?

(2)工厂补充10名新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4G型装置,则补充新工人后每天能配套生产多少产品?

(3)为了在规定期限内完成总任务,请问至少需要补充多少名(2)中的新工人才能在规定期内完成总任务?

查看答案和解析>>

同步练习册答案