【题目】如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.
(1)求∠BAC的度数;
(2)若PA=,求点O到弦AB的距离.
【答案】(1)30°;(2)2
【解析】
(1)根据切线长定理及切线的性质可得PA=PB,∠OAP=90°,由∠PAB=60°可证明△ABP是等边三角形,可得∠BAP=60°,即可求出∠BAC的度数;
(2)连接OP,交AB于点D,根据切线长定理可得∠APO=∠BPO=30°,即可得OP⊥AB,根据垂径定理可求出AD的长,根据含30°角的直角三角形的性质可得OA=2OD,利用勾股定理列方程求出OD的长即可得答案.
(1)∵PA,PB分别是⊙O的切线
∴PA=PB,∠OAP=90°,
∵∠APB=60°
∴△ABP为等边三角形
∴∠BAP=60°
∴∠BAC=90°﹣60°=30°
(2)连接OP,交AB于点D.
∵△ABP为等边三角形
∴BA=PB=PA=,
∵PA,PB分别是⊙O的切线,
∴∠APO=∠BPO=30°,
∴OP⊥AB,
∴AD=AB=,
∵∠ODA=90°,∠BAC=30°,
∴OA=2 OD,
∵,
∴,
解得:OD=2,即点O到弦AB的距离为2.
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过三点
(1)求抛物线的解析式;
(2)在直线上方的抛物线上是否存在一点,使的面积等于的面积的一半?若存在,求出点的坐标;若不存在,说明理由;
(3)点为抛物线上一动点,在轴上是否存在点,使以,,,为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数与反比例函数的图象交于两点,过点作轴,垂足为点,且。
(1)求一次函数与反比例函数的表达式;
(2)根据所给条件,请直接写出不等式的解集;
(3)若是反比例函数图象上的两点,且,求实数的取值范围。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某居民楼的前面有一围墙,在点处测得楼顶的仰角为,在处测得楼顶的仰角为,且的高度为2米,之间的距离为20米(,,在同一条直线上).
(1)求居民楼的高度.
(2)请你求出、两点之间的距离.(参考数据:,,,结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形中,,,点是边上一点,交于点,点在射线上,且是和的比例中项.
(1)如图1,求证:;
(2)如图2,当点在线段之间,联结,且与互相垂直,求的长;
(3)联结,如果与以点、、为顶点所组成的三角形相似,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5m,EF=0.25m,目测点D到地面的距离DG=1.5m,到旗杆的水平距离DC=20m,则旗杆的高度为( )
A. mB. m
C.11.5mD.10m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一个8cm×16cm智屏手机抽象成一个矩形ABCD,其中AB=8cm,AD=16cm,现将正在竖屏看视频的这个手机围绕它的中心R顺时针旋转90°后改为横屏看视频,其中,M是CD的中点,则图中等于45°的角有_____个.(按图中所标字母写出符合条件的角)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P在BC下方的抛物线上运动.
(1)求该抛物线的解析式;
(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;
(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在某次作业中得到如下结果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=+=1.
据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°-α)=1.
(1)当α=30°时,验证sin2α+sin2(90°-α)=1是否成立;
(2)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com