【题目】如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).
(1)求抛物线的解析式及顶点D的坐标;
(2)判断△ABC的形状,证明你的结论;
(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.
【答案】(1), D (,);(2)△ABC是直角三角形,证明见解析;
(3)M( ,0).
【解析】(1)∵点A(-1,0)在抛物线y=x2 + bx-2上,
∴× (-1 )2 + b× (-1)–2 = 0,
解得b =,
∴ 抛物线的解析式为y=x2-x-2.
y= ( x2 -3x- 4 ) =(x-)2-,
∴顶点D的坐标为 (, -).
(2)当x = 0时y = -2,
∴C(0,-2),OC = 2。
当y = 0时, x2-x-2 = 0,
∴x1 =-1, x2 = 4,
∴B (4,0)
∴OA = 1, OB = 4, AB = 5.
∵AB2 = 25, AC2 = OA2 + OC2 = 5, BC2 = OC2 + OB2 = 20,
∴AC2 +BC2 = AB2.
∴△ABC是直角三角形.
(3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC + MD的值最小及△DCM的周长最小
设抛物线的对称轴交x轴于点E.
∵ED∥y轴, ∴∠OC′M=∠EDM,∠C′OM=∠DEM
∴△C′OM∽△DEM.
∴
∴, ∴m =.
所以M的坐标为(,0)
科目:初中数学 来源: 题型:
【题目】已知抛物线满足条件:(1)在时, 随的增大而增大,在时, 随的增大而减小;(2)与轴有两个交点,且两个交点间的距离小于.以下四个结论:①;②;③;④,说法正确的个数有( )个
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠1=∠3,CD∥EF,试说明∠1=∠4.请将过程填写完整.
解:∵∠1=∠3,
又∠2=∠3(_______),
∴∠1=____,
∴______∥______(_______),
又∵CD∥EF,
∴AB∥_____,
∴∠1=∠4(两直线平行,同位角相等).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】无锡阳山地区有A、B两村盛产水蜜桃,现A村有水蜜桃200吨,B村有水蜜桃300吨.计划将这些水蜜桃运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C,D两处的费用分别为每吨15元和18元.设从A村运往C仓库的水蜜桃重量为x吨,A、B两村运往两仓库的水蜜桃运输费用分别为yA元和yB元.
(1)请先填写下表,再根据所填写内容分别求出yA、yB与x之间的函数关系式;
收地运地 | C | D | 总计 |
A | x吨 | ______ | 200吨 |
B | ______ | ______ | 300吨 |
总计 | 240吨 | 260吨 | 500吨 |
(2)试讨论A、B两村中,哪个村的运费较少;
(3)考虑到B村的经济承受能力,B村的水蜜桃运费不得超过4830元,在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的个数是( )
①若是完全平方式,则k=3
②工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质
③在三角形内部到三边距离相等的点是三个内角平分线的交点
④当时
⑤若点P在∠AOB内部,D,E分别在∠AOB的两条边上,PD=PE,则点P在∠AOB的平分线上
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场计划一次性购进、两种型号洗衣机80台,若购进型号洗衣机50台、型号洗衣机30台,则需55000元;若购进型号洗衣机30台、型号洗衣机50台,则需6500元.
(1)求、两种型号的洗衣机的进价各为多少元;
(2)若每台A型号洗衣机售价550元,每台B型号洗衣机售价1080元,该商场计划销售完这80台洗衣机总利润不少于5200元,求最多购进型号洗衣机多少台?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在△ABC中,AC=BC,∠ACB=90°,过点C作CD⊥AB于点D,点E是AB边上一动点(不含端点A,B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G.
(1)求证:AE=CG;
(2)若点E运动到线段BD上时(如图②),试猜想AE,CG的数量关系是否发生变化,请证明你的结论;
(3)过点A作AH⊥CE,垂足为点H,并交CD的延长线于点M(如图③),找出图中与BE相等的线段,直接写出答案BE=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店需要购进甲、乙两种商品共130件,其进价和获利情况如下表:
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于3000元,且销售完这批商品后总获利多于1048元,请问有哪些购货方案?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com