精英家教网 > 初中数学 > 题目详情
12.如图,∠ABC=50°,∠ACB=60°,∠ABC与∠ACB的平分线交于点O,过O作DE∥BC,交AB、AC于点D、E,求∠BOC的度数.

分析 根据角平分线的定义求出∠OBC、∠OCB,再根据三角形的内角和定理列式计算即可得解.

解答 解:∵∠ABC、∠ACB的平分线交于点O,
∴∠OBC=$\frac{1}{2}$∠ABC=$\frac{1}{2}$×50°=25°,
∠OCB=$\frac{1}{2}$∠ACB=$\frac{1}{2}$×60°=30°,
在△OBC中,∠BOC=180°-∠OBC-∠OCB=180°-25°-30°=125°.

点评 本题考查了三角形的内角和定理,角平分线的定义,是基础题,熟记概念并准确识图是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,二次函数y=ax2-$\frac{3}{2}$x+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知点A(-1,0),点C(0,-2).
(1)求抛物线的函数解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上的一个动点,求面积的最大值以及此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=$\frac{4}{5}$,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.
(1)求AD的长;
(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;
(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图①,三个直径为a的等圆⊙P、⊙Q、⊙O两两外切,切点分别是A、B、C.
(1)那么OA的长是$\frac{\sqrt{3}}{2}$a(用含a的代数式表示);
(2)探索:现有若干个直径为a的圆圈分别按如图②所示的方案一和如图③所示的方案二的方式排放,那么这两种方案中n层圆圈的高度hn=na,h′n=$\frac{\sqrt{3}}{2}$(n-1)a+a(用含n、a的代数式表示);
(3)应用:现有一种长方体集装箱,箱内长为6米,宽为2.5米,高为2.5米,用这种集装箱装运长为6米,底面直径(横截面的外圆直径)为0.1米的圆柱形铜管,你认为采用第(2)题中的哪种方案在这种集装箱中装运铜管数多?通过计算说明理由;参考数据:$\sqrt{2}$≈1.41,$\sqrt{3}$≈1.73

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,等边△ABF中,点C,D分别在AF、AB上,线段CD绕点C逆时针旋转60°到线段CE,点E恰好落在BF上.
(1)若AB=6,AC=2,求AD的长;
(2)若AB=6,求四边形CDBE面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解方程组
(1)$\left\{\begin{array}{l}{x-3y=5①}\\{2x+y=5②}\end{array}\right.$
(2)$\left\{\begin{array}{l}{2x+2y=8}\\{2x-2y=4}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.平方根与立方根相等的数是(  )
A.1B.0C.1和0D.0,1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知:如图,矩形ABCD的对角线相交于点O,
(1)若AB=2,∠AOD=120°,求对角线AC的长;
(2)若AC=2AB.求证:△AOB是等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列图形中,既是中心对称图形又是有且只有两条对称轴的对称图形是(  )
A.正三角形B.正方形C.D.矩形

查看答案和解析>>

同步练习册答案